MAP REDUCE SOME PRINCIPLES
AND PATTERNS: IMPLEMENTING OPERATORS

GENOVEVA VARGAS SOLAR
FRENCH COUNCIL OF SCIENTIFIC RESEARCH, LIG-LAFMIA, FRANCE
Genoveva.Vargas@imag.fr

http://www.vargas-solar.com/teaching

http://www.vargas-solar.com

http://imag.fr
http://www.vargas-solar.com/teaching
http://www.vargas-solar.com

MAP-REDUCE

= Programming model for expressing distributed computations on massive amounts of data
= Execution framework for large-scale data processing on clusters of commodity servers

® Market: any organization built around gathering, analyzing, monitoring, filtering, searching, or organizing
content must tackle large-data problems

® data- intensive processing is beyond the capability of any individual machine and requires clusters
= |arge-data problems are fundamentally about organizing computations on dozens, hundreds, or even thousands of

machines

« Data represent the rising tide that lifts all boats—more data lead to better
algorithms and systems for solving real-world problems »

DATA PROCESSING

® Process the data to produce other data: analysis tool, business intelligence tool, ...

® This means

m + Handle large volumes of data

Manage thousands of processors

Parallelize and distribute treatments

Scheduling 11O

Managing Fault Tolerance

Monitor /Control processes
Map-Reduce provides all this easy!

3

COUNTING WORDS

(URI, document) -> (term, count)

see 1 bob <1> bob 1
see bob throw ‘ ’tc)ﬁ?ow 1 run <1> run 1
see spot run see <1,1> see 2
See 1 spot <1> spot 1
spot 1 throw <1> throw 1
run 1

Map Shuffle/Sort Reduce

MAP REDUCE EXAMPLE

" |nput key-values pairs take the form of (docid, doc) pairs stored on the distributed file system,
= the former is a unique identifier for the document

= the latter is the text of the document itself

= The mapper takes an input key-value pair, tokenizes the document, and emits an intermediate key-value pair
for every word:

= the word itself serves as the key, and the integer one serves as the value (denoting that we’ve seen the word once)

= the MapReduce execution framework guarantees that all values associated with the same key are brought together in the
reducer

® The reducer sums up all counts (ones) associated with each word

= emits final key- value pairs with the word as the key, and the count as the value.

= output is written to the distributed file system, one file per reducer

DESIGNING MAP REDUCE ALGORITHMS

PATTERNS AND EXAMPLES

6

BEYOND THE CONTROL OF PROGRAMMERS

Where a mapper or reducer runs (i.e., on which node in the cluster)

® When a mapper or reducer begins or finishes

Which input key-value pairs are processed by a specific mapper

Which intermediate key-value pairs are processed by a specific reducer

UNDER THE CONTROL OF PROGRAMMERS

= The ability to construct complex data structures as keys and values to store and communicate partial results.

® The ability to execute user-specified initialization code at the beginning of a map or reduce task, and the
ability to execute user-specified termination code at the end of a map or reduce task.

® The ability to preserve state in both mappers and reducers across multiple input or intermediate keys.

® The ability to control the sort order of intermediate keys, and therefore the order in which a reducer will
encounter particular keys.

® The ability to control the partitioning of the key space, and therefore the set of keys that will be encountered
by a particular reducer.

MAP-REDUCE PHASES

= |nitialisation
® Map: record reader, mapper, combiner, and partitioner

m Reduce: shuffle, sort, reducer, and output format

Partition input (key, value) pairs into chunks run
map() tasks in parallel

After all map()’s have been completed consolidate
the values for each unique emitted key

Partition space of output map keys, and run
reduce() in parallel

MAP SUB-PHASES

® Record reader translates an input split generated by input format into records

= parse the data into records, but not parse the record itself

m |t passes the data to the mapper in the form of a key/value pair. Usually the key in this context is positional information and the value is the chunk

of data that composes a record

® Map user-provided code is executed on each key/value pair from the record reader to produce zero or more new key/value
pairs, called the intermediate pairs

= The key is what the data will be grouped on and the value is the information pertinent to the analysis in the reducer
= Combiner, an optional localized reducer

= Can group data in the map phase

= |t takes the intermediate keys from the mapper and applies a user-provided method to aggregate values in the small scope of that one mapper

= Partitioner takes the intermediate key/value pairs from the mapper (or combiner) and splits them up into shards, one shard per
reducer

REDUCE SUB PHASES

m Shuffle and sort takes the output files written by all of the partitioners and downloads them to the local
machine in which the reducer is running.

® These individual data pieces are then sorted by key into one larger data list

= The purpose of this sort is to group equivalent keys together so that their values can be iterated over easily in the reduce
task

® Reduce takes the grouped data as input and runs a reduce function once per key grouping
= The function is passed the key and an iterator over all of the values associated with that key

= Once the reduce function is done, it sends zero or more key/value pair to the final step, the output format

® Qutput format translates the final key/value pair from the reduce function and writes it out to a file by a
record writer

GOLD STANDARD

® Linear scalability:
= an algorithm running on twice the amount of data should take only twice as long
= an algorithm running on twice the number of nodes should only take half as long
® Local aggregation: in the context of data-intensive distributed processing

= the single most important aspect of synchronization is the exchange of intermediate results, from the processes that produced them to
the processes that will ultimately consume them

= Hadoop, intermediate results are written to local disk before being sent over the network

= Since network and disk latencies are relatively expensive compared to other operations, reductions in the amount of intermediate
data translate into increases in algorithmic efficiency

= Using the combiner and by taking advantage of the ability to preserve state across multiple inputs

—> it is possible to substantially reduce both the number and size of key-value pairs that need to be shuffled from the mappers to the
reducers

COUNTING WORDS BASIC ALGORITHM

1:

class MAPPER
method MAP(docid a, doc d)
for all term ¢ € doc d do
EMIT(term ¢, count 1)

class REDUCER
method REDUCE(term ¢, counts [c;, ¢, .. .])
sum + 0
for all count ¢ € counts [c1,cz,...] do
sum <« sum +c
EMIT(term ¢, count sum)

the mapper emits an intermediate key-value pair
for each term observed, with the term itself as the
key and a value of one

reducers sum up the partial counts to arrive at the
final count

LOCAL AGGREGATION

Combiner technique

: class MAPPER
method MAP(docid a, doc d)

1
2
= Provide a general mechanism within the MapReduce 3 H «— new ASSOCIATIVEARRAY
i diate d
framework to reduce the amount of intermediate data 4 for all term ¢ € doc d do

= Aggregate term counts across the documents
processed by each map task

generated by the mappers

® Reduction in the number of intermediate key-value
pairs that need to be shuffled across the network 6: for all term ¢ € H do
= from the order of total number of terms in the 7 EMIT(term t’ count H{t})

collection to the order of the number of unique terms
in the collection

IN-MAPPER COMBINING PATTERN: ONE STEP FURTHER

= The workings of this algorithm critically depends on the details
of how map and reduce tasks in Hadoop are executed 1: class MAPPER
= Prior to processing any input key-value pairs, the mapper’s 2: method INITIALIZE
Initialize method is called 3. H «— new ASSOCIATIVEARRAY
4 method MAP(docid a, doc d)
for all term ¢ € doc d do
H{t} — H{t} +1
method CLOSE
for all term ¢t € H do

EMmiIT(term t, count H{t})

= which is an APl hook for user-specified code
= We initialize an associative array for holding term counts

= Since it is possible to preserve state across multiple calls of the Map
method (for each input key-value pair), we can

= continue to accumulate partial term counts in the associative array across
multiple documents,

©® o e ®

= emit key-value pairs only when the mapper has processed all documents

= Transmission of intermediate data is deferred until the Close
method in the pseudo-code

Contact:

Gracias

Genoveva Vargas-Solar, CNRS, LIG-LAFMIA

Genoveva.Vargas@imag.fr

http://www.vargas-solar.com/teaching

http://imag.fr
http://www.vargas-solar.com/teaching

SOME BOOKS

= Hadoop The Definitive Guide — O’Reily 201 | —Tom White
® Data Intensive Text Processing with MapReduce — Morgan & Claypool 2010 —Jimmy Lin, Chris Dyer — pages 37-65

® Cloud Computing and Software Services Theory and Techniques— CRC Press 201 |- Syed Ahson, Mohammad llyas —
pages 93-137

= Writing and Querying MapReduce Views in CouchDB — O’Reily 201 | —Brandley Holt — pages 5-29
= NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence by Pramod J. Sadalage, Martin Fowler

(:l::;’l\t::::::fri'cifl::m ") lu-nn'muw'l‘n. Web Data
ol : . Processing with MapReduce :\’[ZlPRCdUCC Management
\ Views in
CouchDB
R i

LA ~Distilled ,

Saage Abirebes, lnsns Nasolases, Pilppe Rigees f
Murie Cariatine Rewsant, Prorre Sasallart

