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MAP-REDUCE

¡ Programming model for expressing distributed computations on massive amounts of data 

¡ Execution framework for large-scale data processing on clusters of commodity servers

¡ Market: any organization built around gathering, analyzing, monitoring, filtering, searching, or organizing 
content must tackle large-data problems

¡ data- intensive processing is beyond the capability of any individual machine and requires clusters

¡ large-data problems are fundamentally about organizing computations on dozens, hundreds, or even thousands of 
machines
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« Data represent the rising tide that lifts all boats—more data lead to better
algorithms and systems for solving real-world problems »



DATA PROCESSING

¡ Process the data to produce other data: analysis tool, business intelligence tool, ...

¡ This means

¡ •  Handle large volumes of data

¡ •  Manage thousands of processors

¡ •  Parallelize and distribute treatments 

¡ Scheduling I/O 

¡ Managing Fault Tolerance

¡ Monitor /Control processes

Map-Reduce provides all this easy!
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COUNTING WORDS

4

(URI, document) à (term, count)

see bob throw
see spot run

bob <1>
run <1>
see <1,1> 
spot <1> 
throw <1>

see 1 
bob 1
throw 1
see 1 
spot 1 
run 1

bob 1
run 1
see 2 
spot 1 
throw 1

Map Shuffle/Sort Reduce



MAP REDUCE EXAMPLE

¡ Input key-values pairs take the form of (docid, doc) pairs stored on the distributed file system, 
¡ the former is a unique identifier for the document

¡ the latter is the text of the document itself

¡ The mapper takes an input key-value pair, tokenizes the document, and emits an intermediate key-value pair 
for every word: 

¡ the word itself serves as the key, and the integer one serves as the value (denoting that we’ve seen the word once)

¡ the MapReduce execution framework guarantees that all values associated with the same key are brought together in the 
reducer

¡ The reducer sums up all counts (ones) associated with each word 

¡ emits final key- value pairs with the word as the key, and the count as the value.

¡ output is written to the distributed file system, one file per reducer
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DESIGNING MAP REDUCE ALGORITHMS
PATTERNS AND EXAMPLES
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BEYOND THE CONTROL OF PROGRAMMERS

¡ Where a mapper or reducer runs (i.e., on which node in the cluster)

¡ When a mapper or reducer begins or finishes

¡ Which input key-value pairs are processed by a specific mapper

¡ Which intermediate key-value pairs are processed by a specific reducer
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UNDER THE CONTROL OF PROGRAMMERS

¡ The ability to construct complex data structures as keys and values to store and communicate partial results.

¡ The ability to execute user-specified initialization code at the beginning of a map or reduce task, and the 
ability to execute user-specified termination code at the end of a map or reduce task.

¡ The ability to preserve state in both mappers and reducers across multiple input or intermediate keys.

¡ The ability to control the sort order of intermediate keys, and therefore the order in which a reducer will 
encounter particular keys.

¡ The ability to control the partitioning of the key space, and therefore the set of keys that will be encountered 
by a particular reducer.
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MAP-REDUCE PHASES

¡ Initialisation

¡ Map: record reader, mapper, combiner, and partitioner

¡ Reduce: shuffle, sort, reducer, and output format

¡ Partition input (key, value) pairs into chunks run 
map() tasks in parallel

¡ After all map()’s have been completed consolidate 
the values for each unique emitted key

¡ Partition space of output map keys, and run 
reduce() in parallel
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MAP SUB-PHASES

¡ Record reader translates an input split generated by input format into records

¡ parse the data into records, but not parse the record itself

¡ It passes the data to the mapper in the form of a key/value pair. Usually the key in this context is positional information and the value is the chunk 
of data that composes a record

¡ Map user-provided code is executed on each key/value pair from the record reader to produce zero or more new key/value 
pairs, called the intermediate pairs

¡ The key is what the data will be grouped on and the value is the information pertinent to the analysis in the reducer

¡ Combiner, an optional localized reducer

¡ Can group data in the map phase

¡ It takes the intermediate keys from the mapper and applies a user-provided method to aggregate values in the small scope of that one mapper

¡ Partitioner takes the intermediate key/value pairs from the mapper (or combiner) and splits them up into shards, one shard per 
reducer
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REDUCE SUB PHASES

¡ Shuffle and sort takes the output files written by all of the partitioners and downloads them to the local 
machine in which the reducer is running. 

¡ These individual data pieces are then sorted by key into one larger data list 

¡ The purpose of this sort is to group equivalent keys together so that their values can be iterated over easily in the reduce 
task

¡ Reduce takes the grouped data as input and runs a reduce function once per key grouping

¡ The function is passed the key and an iterator over all of the values associated with that key

¡ Once the reduce function is done, it sends zero or more key/value pair to the final step, the output format

¡ Output format translates the final key/value pair from the reduce function and writes it out to a file by a 
record writer
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GOLD STANDARD

¡ Linear scalability: 
¡ an algorithm running on twice the amount of data should take only twice as long

¡ an algorithm running on twice the number of nodes should only take half as long

¡ Local aggregation: in the context of data-intensive distributed processing

¡ the single most important aspect of synchronization is the exchange of intermediate results, from the processes that produced them to 
the processes that will ultimately consume them

¡ Hadoop, intermediate results are written to local disk before being sent over the network

¡ Since network and disk latencies are relatively expensive compared to other operations, reductions in the amount of intermediate 
data translate into increases in algorithmic efficiency

¡ Using the combiner and by taking advantage of the ability to preserve state across multiple inputs

à it is possible to substantially reduce both the number and size of key-value pairs that need to be shuffled from the mappers to the 
reducers
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COUNTING WORDS BASIC ALGORITHM

¡ the mapper emits an intermediate key-value pair 
for each term observed, with the term itself as the 
key and a value of one

¡ reducers sum up the partial counts to arrive at the 
final count
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LOCAL AGGREGATION

Combiner technique

¡ Aggregate term counts across the documents 
processed by each map task

¡ Provide a general mechanism within the MapReduce
framework to reduce the amount of intermediate data 
generated by the mappers

¡ Reduction in the number of intermediate key-value 
pairs that need to be shuffled across the network

¡ from the order of total number of terms in the 
collection to the order of the number of unique terms 
in the collection
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IN-MAPPER COMBINING PATTERN: ONE STEP FURTHER

¡ The workings of this algorithm critically depends on the details 
of how map and reduce tasks in Hadoop are executed

¡ Prior to processing any input key-value pairs, the mapper’s 
Initialize method is called 

¡ which is an API hook for user-specified code

¡ We initialize an associative array for holding term counts

¡ Since it is possible to preserve state across multiple calls of the Map
method (for each input key-value pair), we can 

¡ continue to accumulate partial term counts in the associative array across 
multiple documents, 

¡ emit key-value pairs only when the mapper has processed all documents

¡ Transmission of intermediate data is deferred until the Close
method in the pseudo-code

15



Contact:    Genoveva Vargas-Solar, CNRS, LIG-LAFMIA
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SOME BOOKS

¡ Hadoop The Definitive Guide – O’Reily 2011 – Tom White

¡ Data Intensive Text Processing with MapReduce – Morgan & Claypool 2010 –Jimmy Lin, Chris Dyer – pages 37-65

¡ Cloud Computing and Software Services Theory and Techniques– CRC Press 2011- Syed Ahson, Mohammad Ilyas –
pages 93-137

¡ Writing and Querying MapReduceViews in CouchDB – O’Reily 2011 –Brandley Holt – pages 5-29

¡ NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence by Pramod J. Sadalage, Martin Fowler
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