
MAP REDUCE SOME PRINCIPLES
AND PATTERNS: IMPLEMENTING OPERATORS

GENOVEVA VARGAS SOLAR

FRENCH COUNCIL OF SCIENTIFIC RESEARCH, LIG-LAFMIA, FRANCE

Genoveva.Vargas@imag.fr

http://www.vargas-solar.com/teaching

http://www.vargas-solar.com

http://imag.fr
http://www.vargas-solar.com/teaching
http://www.vargas-solar.com

MAP-REDUCE

¡ Programming model for expressing distributed computations on massive amounts of data

¡ Execution framework for large-scale data processing on clusters of commodity servers

¡ Market: any organization built around gathering, analyzing, monitoring, filtering, searching, or organizing
content must tackle large-data problems

¡ data- intensive processing is beyond the capability of any individual machine and requires clusters

¡ large-data problems are fundamentally about organizing computations on dozens, hundreds, or even thousands of
machines

2

« Data represent the rising tide that lifts all boats—more data lead to better
algorithms and systems for solving real-world problems »

DATA PROCESSING

¡ Process the data to produce other data: analysis tool, business intelligence tool, ...

¡ This means

¡ • Handle large volumes of data

¡ • Manage thousands of processors

¡ • Parallelize and distribute treatments

¡ Scheduling I/O

¡ Managing Fault Tolerance

¡ Monitor /Control processes

Map-Reduce provides all this easy!

3

COUNTING WORDS

4

(URI, document) à (term, count)

see bob throw
see spot run

bob <1>
run <1>
see <1,1>
spot <1>
throw <1>

see 1
bob 1
throw 1
see 1
spot 1
run 1

bob 1
run 1
see 2
spot 1
throw 1

Map Shuffle/Sort Reduce

MAP REDUCE EXAMPLE

¡ Input key-values pairs take the form of (docid, doc) pairs stored on the distributed file system,
¡ the former is a unique identifier for the document

¡ the latter is the text of the document itself

¡ The mapper takes an input key-value pair, tokenizes the document, and emits an intermediate key-value pair
for every word:

¡ the word itself serves as the key, and the integer one serves as the value (denoting that we’ve seen the word once)

¡ the MapReduce execution framework guarantees that all values associated with the same key are brought together in the
reducer

¡ The reducer sums up all counts (ones) associated with each word

¡ emits final key- value pairs with the word as the key, and the count as the value.

¡ output is written to the distributed file system, one file per reducer

5

DESIGNING MAP REDUCE ALGORITHMS
PATTERNS AND EXAMPLES

6

BEYOND THE CONTROL OF PROGRAMMERS

¡ Where a mapper or reducer runs (i.e., on which node in the cluster)

¡ When a mapper or reducer begins or finishes

¡ Which input key-value pairs are processed by a specific mapper

¡ Which intermediate key-value pairs are processed by a specific reducer

7

UNDER THE CONTROL OF PROGRAMMERS

¡ The ability to construct complex data structures as keys and values to store and communicate partial results.

¡ The ability to execute user-specified initialization code at the beginning of a map or reduce task, and the
ability to execute user-specified termination code at the end of a map or reduce task.

¡ The ability to preserve state in both mappers and reducers across multiple input or intermediate keys.

¡ The ability to control the sort order of intermediate keys, and therefore the order in which a reducer will
encounter particular keys.

¡ The ability to control the partitioning of the key space, and therefore the set of keys that will be encountered
by a particular reducer.

8

MAP-REDUCE PHASES

¡ Initialisation

¡ Map: record reader, mapper, combiner, and partitioner

¡ Reduce: shuffle, sort, reducer, and output format

¡ Partition input (key, value) pairs into chunks run
map() tasks in parallel

¡ After all map()’s have been completed consolidate
the values for each unique emitted key

¡ Partition space of output map keys, and run
reduce() in parallel

9

MAP SUB-PHASES

¡ Record reader translates an input split generated by input format into records

¡ parse the data into records, but not parse the record itself

¡ It passes the data to the mapper in the form of a key/value pair. Usually the key in this context is positional information and the value is the chunk
of data that composes a record

¡ Map user-provided code is executed on each key/value pair from the record reader to produce zero or more new key/value
pairs, called the intermediate pairs

¡ The key is what the data will be grouped on and the value is the information pertinent to the analysis in the reducer

¡ Combiner, an optional localized reducer

¡ Can group data in the map phase

¡ It takes the intermediate keys from the mapper and applies a user-provided method to aggregate values in the small scope of that one mapper

¡ Partitioner takes the intermediate key/value pairs from the mapper (or combiner) and splits them up into shards, one shard per
reducer

10

REDUCE SUB PHASES

¡ Shuffle and sort takes the output files written by all of the partitioners and downloads them to the local
machine in which the reducer is running.

¡ These individual data pieces are then sorted by key into one larger data list

¡ The purpose of this sort is to group equivalent keys together so that their values can be iterated over easily in the reduce
task

¡ Reduce takes the grouped data as input and runs a reduce function once per key grouping

¡ The function is passed the key and an iterator over all of the values associated with that key

¡ Once the reduce function is done, it sends zero or more key/value pair to the final step, the output format

¡ Output format translates the final key/value pair from the reduce function and writes it out to a file by a
record writer

11

GOLD STANDARD

¡ Linear scalability:
¡ an algorithm running on twice the amount of data should take only twice as long

¡ an algorithm running on twice the number of nodes should only take half as long

¡ Local aggregation: in the context of data-intensive distributed processing

¡ the single most important aspect of synchronization is the exchange of intermediate results, from the processes that produced them to
the processes that will ultimately consume them

¡ Hadoop, intermediate results are written to local disk before being sent over the network

¡ Since network and disk latencies are relatively expensive compared to other operations, reductions in the amount of intermediate
data translate into increases in algorithmic efficiency

¡ Using the combiner and by taking advantage of the ability to preserve state across multiple inputs

à it is possible to substantially reduce both the number and size of key-value pairs that need to be shuffled from the mappers to the
reducers

12

COUNTING WORDS BASIC ALGORITHM

¡ the mapper emits an intermediate key-value pair
for each term observed, with the term itself as the
key and a value of one

¡ reducers sum up the partial counts to arrive at the
final count

13

LOCAL AGGREGATION

Combiner technique

¡ Aggregate term counts across the documents
processed by each map task

¡ Provide a general mechanism within the MapReduce
framework to reduce the amount of intermediate data
generated by the mappers

¡ Reduction in the number of intermediate key-value
pairs that need to be shuffled across the network

¡ from the order of total number of terms in the
collection to the order of the number of unique terms
in the collection

14

IN-MAPPER COMBINING PATTERN: ONE STEP FURTHER

¡ The workings of this algorithm critically depends on the details
of how map and reduce tasks in Hadoop are executed

¡ Prior to processing any input key-value pairs, the mapper’s
Initialize method is called

¡ which is an API hook for user-specified code

¡ We initialize an associative array for holding term counts

¡ Since it is possible to preserve state across multiple calls of the Map
method (for each input key-value pair), we can

¡ continue to accumulate partial term counts in the associative array across
multiple documents,

¡ emit key-value pairs only when the mapper has processed all documents

¡ Transmission of intermediate data is deferred until the Close
method in the pseudo-code

15

Contact: Genoveva Vargas-Solar, CNRS, LIG-LAFMIA
Genoveva.Vargas@imag.fr
http://www.vargas-solar.com/teaching

16

http://imag.fr
http://www.vargas-solar.com/teaching

SOME BOOKS

¡ Hadoop The Definitive Guide – O’Reily 2011 – Tom White

¡ Data Intensive Text Processing with MapReduce – Morgan & Claypool 2010 –Jimmy Lin, Chris Dyer – pages 37-65

¡ Cloud Computing and Software Services Theory and Techniques– CRC Press 2011- Syed Ahson, Mohammad Ilyas –
pages 93-137

¡ Writing and Querying MapReduceViews in CouchDB – O’Reily 2011 –Brandley Holt – pages 5-29

¡ NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence by Pramod J. Sadalage, Martin Fowler

17

