

Javier Espinosa, javier.espinosa@imag.fr
Web Programming: Languages and Technologies

Service Oriented Programming: Developing a
RESTful Service

In Service Oriented Programming a RESTful service is a service conforming to the REST (Representational State
Transfer) architecture style. In this kind of architecture (i) you think in terms of resources and their
representations (instead of thinking about operations, inputs and outputs), and (ii) you address and transfer
resource states using the URI and HTTP standards.

When a service follows the REST architecture, every client knowing how to use HTTP can access the states and
representations of the resources of a RESful service (cf. figure below). In this exercise you will develop a
RESTful service using Javascript and NodeJS for exposing a music catalogue as a set of resources.

REQUIREMENTS
• NodeJS

• Express (NodeJS module)
• cURL or Postman (Chrome extension)

• CouchDB
• MusicCatalog REST Service and Client (distributed on course)

OBJECTIVES
• Implement a RESTful service and understand the use of HTTP methods for interacting with it.
• Develop an application that uses your RESTful service.
• Use a NoSQL database for storing the RESTful service data.

http://nodejs.org/
http://expressjs.com/
http://espinosa-oviedo.com/web-programming/hands-on/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB8QFjAA&url=https%3A%2F%2Fchrome.google.com%2Fwebstore%2Fdetail%2Fpostman-rest-client%2Ffdmmgilgnpjigdojojpjoooidkmcomcm&ei=65_nVNyUGYv2UtOQhNgF&usg=AFQjCNFL71vN61QG0LKlw7VDJvIZDprjHA&sig2=Pj7vJFRZQ5Nnpl3-DqQ-0A&bvm=bv.86475890,d.d24
http://couchdb.apache.org/

Javier Espinosa, javier.espinosa@imag.fr
Web Programming: Languages and Technologies

MUSIC CATALOG OVERVIEW
For this exercise you will use the Music Catalog application. The following figure illustrates its architecture
(REST service and client parts).

As shown in the figure, the Music Catalog service exposes two resources:

• /albums — represents a music catalog as a collection of albums.

• /albums/:id — represents an album identified by :id.

The figure also shows that clients and service exchange information about albums using the JSON data
representation. The following diagram the structure representing an album instance.

SERVICE BEHAVIOUR
In order to implement a RESTful service you have to specify what to do when a client executes an HTTP
operation over one of your resources. In web programming this is called routing (i.e. the association of a HTTP
operation with a resource).

The table below summarizes the semantic of HTTP operations when executed over the Music Catalog
resources.

URL Method Parameter Description

http://localhost:3000/albums

GET - List all the albums

PUT Album Add a new album

POST - Unused

DELETE - Unused

http://localhost:3000/albums/:id

GET - Get the album

PUT - Update the album

POST - Unused

DELETE - Delete the album

In the Music Catalog REST service, these semantics are implemented by the routings specified in the
CatalogService.js file. The content of this file is shown below.

Javier Espinosa, javier.espinosa@imag.fr
Web Programming: Languages and Technologies

var express = require('express');
var bodyParser = require('body-parser');

var app = express();
app.use(bodyParser.json());

var albums = {};
albums['1'] = { "id":1, "name": 'The 2nd Law', "artist": 'Muse', "year": 2012 };

app.get('/albums', function (request, response) {
 response.json(albums);
});

app.get('/albums/:id', function (request, response) {
 response.json(albums[request.params.id]);
});

app.put('/albums/:id', function (request, response) {
 var album = request.body;
 albums[request.params.id] = album;
 response.json('OK');
});

app.delete('/albums/:id', function (request, response) {
 var deleted = delete albums[request.params.id];
 response.json(deleted);
});

var server = app.listen(3000, function () {
 console.log('Listening at http://localhost:%s', server.address().port);
});

As you can see, the catalog service defines routes by calling the GET/PUT/POST/DELETE methods of an express
object (see Express for more information). For instance, the following code snippet illustrates how to retrieve a
specific album using its ID by routing the GET operation to the resource /albums/:id.

app.get('/albums/:id', function (request, response) {
 response.json(albums[request.params.id]);
});

Note that the ID of an album is resolved dynamically by matching the request’ URI with the string /albums/:id.
Also note that you can access this value at runtime by using the object request.params. Finally note that,
before sending information back to the client (i.e., the set of albums), the service transforms the JavaScript
object containing the album information (albums[request.params.id]) into its JSON representation
(response.json(OBJECT)).

The following code snippet illustrates how to add a new album to the catalog by routing a PUT operation to
the resource /albums/:id.

var app = express();
app.use(bodyParser.json());

app.put('/albums/:id', function (request, response) {
 var album = request.body;
 albums[request.params.id] = album;

http://expressjs.com/4x/api.html

Javier Espinosa, javier.espinosa@imag.fr
Web Programming: Languages and Technologies

 response.json('OK');
});

In this example the service retrieves the information about the new album by accessing the HTTP request body
(request.body). Then, as in the previous example, it uses the id specified in the album resource
(request.params.id) in order to store the album into the music catalog (albums[request.params.id] = album).

Recall that client and service send albums’ information using the JSON data representation. This implies that
you have to ALWAYS transform a JavaScript object into JSON (and vice versa) in order to communicate. Note
that in the previous example Express converts automatically the request.body to Javascript because it assumes
that all body requests are represented in JSON (app.use(bodyParser.json())).

TESTING THE SERVICE CATALOG
Run the Music Catalog service by executing the following command inside the Music Catalog application folder:

node CatalogService

Once running, test the service by issuing the following HTTP requests with cURL (or Postman).

GET all albums
curl localhost:3000/albums

Add new album
curl -X PUT localhost:3000/albums/2 -H "Content-Type: application/json" -d @-
{
 "id": 2,
 "name": "The Resistance",
 "artist": "Muse",
 "year": 2009
}
Press CTRL + D

GET all albums
curl localhost:3000/albums

SERVICE CLIENT
Until now you have used a third-party tool for interacting with the Music Catalog service (e.g., Web Browser,
cURL, Postman). In this section you will use the Catalog Client (a JavaScript application) for sending HTTP
request to the Catalog Service.

As shown in the figure below, the Catalog Client is composed of the following classes:

• HttpClient — Offers basic operations for executing HTTP requests. The HTTP client assumes that all
data is sent using JSON as the data format representation.

• CatalogClient — Offers operations for adding, getting, removing the albums in the Music Catalog.
These operations use the HTTP Client.

• Run — Script illustrating the use of the Catalog Client.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB8QFjAA&url=https%3A%2F%2Fchrome.google.com%2Fwebstore%2Fdetail%2Fpostman-rest-client%2Ffdmmgilgnpjigdojojpjoooidkmcomcm&ei=65_nVNyUGYv2UtOQhNgF&usg=AFQjCNFL71vN61QG0LKlw7VDJvIZDprjHA&sig2=Pj7vJFRZQ5Nnpl3-DqQ-0A&bvm=bv.86475890,d.d24

Javier Espinosa, javier.espinosa@imag.fr
Web Programming: Languages and Technologies

HTTP client
The following snippet shows the code of the HTTP Client class (cf. HttpClient.js file).

this.GET = function(url, callback) {
 this.doRequest('GET', url, null, callback);
};

this.PUT = function (url, data, callback) {
 this.doRequest('PUT', url, data, callback);
};

this.DELETE = function (url, callback) {
 this.doRequest('DELETE', url, null, callback);
};

this.doRequest = function(verb, url, data, callback) {

 var options = {
 hostname: URL.parse(url).hostname,
 port: URL.parse(url).port,
 path: URL.parse(url).path,
 method: verb,
 headers: {
 'Content-Type': 'application/json',
 'Content-Length': (data)? data.length: 0
 }
 };

 var req = http.request(options, function(res) {…);

 req.write((data)? data: '');
 req.end();

};

Note that all HTTPClient operations (GET/PUT/DELETE) depend on the doRequest function, which is in charge
of preparing the HTTP message: header (options) and body (req.write(data)). Also note that doRequest
assumes that all content (data) sent by the HTTPClient is represented in JSON (‘Content-Type:
application/json’).

Catalog client
The following snippet illustrates the use of the HttpClient for adding and getting an album
(cf. CatalogClient.js).

Javier Espinosa, javier.espinosa@imag.fr
Web Programming: Languages and Technologies

var ALBUMS_URI = 'http://localhost:3000/albums';
var ALBUM_URI = 'http://localhost:3000/albums/{_}';
var http = new HttpClient();

this.addAlbum = function (album, callback) {
 var url = ALBUM_URI.replace('{_}', album.id);
 var data = JSON.stringify(album);
 http.PUT(url, data, callback)
};

this.getAlbum = function (albumID, callback) {
 var url = ALBUM_URI.replace('{_}', albumID);
 http.GET(url, function (resp) {
 var album = JSON.parse(resp.body);
 callback(album);
 });
};

Note that before adding a new album into the catalog (using http.PUT), the addAlbum function converts the
album JavaScript object into JSON using the JSON.stringify(). In a similar way, when the getAlbum function
receives the response from the service, it uses the JSON.parse function for converting the response body (sent
in JSON format) into a JavaScript object.

Run script
Finally the following code illustrates the use of the CatalogClient class for adding, retrieving and removing
albums programmatically (cf. Run.js file).

 /// Step 0: Show the albums in the catalog
 .then(function (next) {
 client.getAlbums(function (albums) {
 console.log('\n'+'ALBUMS (before insertion)');
 console.log(albums);
 next();
 });
 })
 /// Step 1: Insert new album in Catalog
 .then(function (next) {
 var album = { "id": 2, "name": 'The Resistance', "artist": 'Muse', "year": 2009 };
 client.addAlbum(album, function (resp) {
 next();
 });
 })
 /// Step 2: Insert another album (with errors)
 .then(function (next) {
 var album = { "id": 3, "name": 'XXXX', "artist": 'YYYY', "year": 0000 };
 client.addAlbum(album, function (resp) {
 next();
 });
 })
 /// Step 3: Show the albums in the catalog
 .then(function (next) {
 client.getAlbums(function (albums) {
 console.log('\n'+'ALBUMS (after insertions)');
 console.log(albums);
 next();
 });
 })

Javier Espinosa, javier.espinosa@imag.fr
Web Programming: Languages and Technologies

 /// Step 4: Remove the album with errors
 .then(function (next) {
 client.removeAlbum('3', function () {
 next();
 });
 })
 /// Step 5: Show (again) the albums in the catalog
 .then(function (next) {
 client.getAlbums(function (albums) {
 console.log('\n'+'ALBUMS (after deletion)');
 console.log(albums);
 next();
 });
 });

TO DO
For this exercise you have to:

• Describe the characteristics of the Catalog REST service. For instance, it is stateful/stateless,
persistent/non-persistent?

• Implement a Deezer Client using the HTTPClient class for searching and retrieves information about
albums using the Deezer RESTful Service.

• Modify the Catalog Service in order to store the Catalog in CouchDB.

• Define a CouchDB view for retrieving the URLs of the albums’ covers (see CouchDB: The definitive
guide).

http://developers.deezer.com/api
http://guide.couchdb.org/
http://guide.couchdb.org/

	Requirements
	Objectives
	Music catalog overview
	Service behaviour
	Testing the service catalog
	Service client
	HTTP client
	Catalog client
	Run script

	To Do

