
Principled Design of the ModernWeb Architecture

Roy T. Fielding and Richard N. Taylor
Information and Computer Science

University of California, Irvine
Irvine, CA 92697–3425 USA

+1.949.824.4121
{fielding,taylor}@ics.uci.edu
a
n

for
of
es
nt
ing
In

ral
ral
se
.

at
n
nd
d

her
bles
ic
by
et-

le
de
its
d
he
ale
nt
ols
nt
ed
e
red

e.

rs’
3)
lf,

cus
ABSTRACT
The World Wide Web has succeeded in large part because its
software architecture has been designed to meet the needs of
an Internet-scale distributed hypermedia system. The
modern Web architecture emphasizes scalability of
component interactions, generality of interfaces,
independent deployment of components, and intermediary
components to reduce interaction latency, enforce security,
and encapsulate legacy systems. In this paper, we introduce
the Representational State Transfer (REST) architectural
style, developed as an abstract model of the Web architecture
to guide our redesign and definition of the Hypertext
Transfer Protocol and Uniform Resource Identifiers. We
describe the software engineering principles guiding REST
and the interaction constraints chosen to retain those
principles, contrasting them to the constraints of other
architectural styles. We then compare the abstract model to
the currently deployed Web architecture in order to elicit
mismatches between the existing protocols and the
applications they are intended to support.

Keywords
software architecture, software architectural style, WWW

1 INTRODUCTION
At the beginning of our efforts within the Internet
Engineering Taskforce to define the existing Hypertext
Transfer Protocol (HTTP/1.0) [5] and design the extensions
for the new standards of HTTP/1.1 [10] and Uniform
Resource Identifiers (URI) [6], we recognized the need for a
model of how the World Wide Web (WWW, or simply Web)
shouldwork. This idealized model of the interactions within
an overall Web application, what we refer to as the
Representational State Transfer (REST) architectural style,
became the foundation for the modern Web architecture,
providing the guiding principles by which flaws in the
preexisting architecture could be identified and extensions
validated prior to deployment.

A software architecture determines how systemelements are
identified and allocated, how the elements interact to form
system, the amount and granularity of communicatio
needed for interaction, and the interface protocols used
communication. An architectural style is an abstraction
the key aspects within a set of potential architectur
(instantiations of the style), encapsulating importa
decisions about the architectural elements and emphasiz
constraints on the elements and their relationships [17].
other words, a style is a coordinated set of architectu
constraints that restricts the roles/features of architectu
elements and the allowed relationships among tho
elements within any architecture that conforms to the style

REST is a coordinated set of architectural constraints th
attempts to minimize latency and network communicatio
while at the same time maximizing the independence a
scalability of component implementations. This is achieve
by placing constraints on connector semantics where ot
styles have focused on component semantics. REST ena
the caching and reuse of interactions, dynam
substitutability of components, and processing of actions
intermediaries, thereby meeting the needs of an Intern
scale distributed hypermedia system.

The modern Web is one instance of a REST-sty
architecture. Although Web-based applications can inclu
access to other styles of interaction, the central focus of
protocol and performance concerns is distribute
hypermedia. REST elaborates only those portions of t
architecture that are considered essential for Internet-sc
distributed hypermedia interaction. Areas for improveme
of the Web architecture can be seen where existing protoc
fail to express all of the potential semantics for compone
interaction, and where the details of syntax can be replac
with more efficient forms without changing the architectur
capabilities. Likewise, proposed extensions can be compa
to REST to see if they fit within the architecture; if not, it is
more efficient to redirect that functionality to a system
running in parallel with a more applicable architectural styl

This paper presents REST after the completion of six yea
work on architectural standards for the modern (post-199
Web. It does not present the details of the architecture itse
since those are found within the standards. Instead, we fo

e
nts;
nd
er
is
nt
e
le
in

of
the
d

f
ry

it
d
er

es
ge
d
e.
eb
s,
ted
ist
g

re.
d to
1].
a

to
do
or
led
ur

an
ed
e
nts
ing
of

to
eir

ntal
on the unpublished rationale behind the modern Web’s
architectural design and the software engineering principles
upon which it is based. In the process, we identify areas
where the Web protocols have failed to match the style, the
extent to which these failures can be fixed within the
immediate future via protocol enhancements, and the lessons
learned from using an interaction style to guide the design of
a distributed architecture.

2 WWW DOMAIN CHARACTERISTICS
In order to understand the REST rationale, we must first
examine the goals of the WWW project and the information
system characteristics needed to achieve those goals.

Berners-Lee [4] writes that the “Web’s major goal was to be
a shared information space through which people and
machines could communicate.” What was needed was a way
for people to store and structure their own information,
whether permanent or ephemeral in nature, such that it could
be usable by themselves and others, and to be able to
reference and structure the information stored by others so
that it would not be necessary for everyone to keep and
maintain local copies. The people intended to use this system
were located around the world, at various university and
government high-energy physics research labs connected via
the Internet. Their machines were a heterogeneous collection
of terminals, workstations, servers and supercomputers,
requiring a hodge podge of operating system software and
file formats. The information ranged from personal research
notes to organizational phone listings. The challenge was to
build a system that would provide a universally consistent
interface to this structured information, available on as many
platforms as possible, and incrementally deployable as new
people and organizations joined the project.

Hypermedia was chosen as the user interface because of its
simplicity and generality: the same interface can be used
regardless of the information source, the flexibility of
hypermedia relationships (links) allows for unlimited
structuring, and the direct manipulation of links allows the
complex relationships within the information to guide the
reader through an application. Since information within large
databases is often much easier to access via a search
interface rather than browsing, theWeb also incorporated the
ability to perform simple queries by providing user-entered
data to a service and rendering the result as hypermedia.

The usability of hypermedia interaction is highly sensitive to
user-perceived latency: the time between selecting a link and
the rendering of a usable result. Since the Web’s information
sources would be distributed across the global Internet, the
architecture needed to minimize network interactions
(round-trips within the protocol). Latency occurs at several
points in the processing of a distributed application action: 1)
the time needed for the user agent to recognize the event that
initiated the action; 2) the time required to setup any
interaction(s) between components; 3) the time required to

transmit each interaction to the components; 4) the tim
required to process each interaction on those compone
and, 5) the time required to complete sufficient transfer a
processing of the result of the interaction(s) before the us
agent is able to begin rendering a usable result. It
important to note that, although only (3) and (5) represe
actual network communication, all five points can b
impacted by the architectural style. Furthermore, multip
interactions are additive to latency unless they take place
parallel.

Scalability was also a concern, since the number
references to a resource would be directly proportional to
number of people interested in that information, an
particularly newsworthy information would lead to “flash
crowds”: sudden spikes in access attempts.

Since participation in the creation and structuring o
information was voluntary, a low entry-barrier was necessa
to enable sufficient adoption. While simplicity makes
possible to deploy an initial implementation of a distribute
system, extensibility allows us to avoid getting stuck forev
with the limitations of what was deployed. Even if it were
possible to build a software system that perfectly match
the requirements of its users, those requirements will chan
over time just as society changes over time. A long-live
system like the Web must be prepared for chang
Furthermore, because the components participating in W
applications often span multiple organizational boundarie
the system must be prepared for gradual and fragmen
change, where old and new implementations co-ex
without preventing the new implementations from makin
use of their extended capabilities.

All of these project goals and information system
characteristics fed into the design of the Web’s architectu
As the Web has matured, additional goals have been adde
support greater collaboration and distributed authoring [1
The introduction of each new goal presents us with
challenge: how do we introduce a new set of functionality
an architecture that is already widely deployed, and how
we ensure that its introduction does not adversely impact,
even destroy, the architectural properties that have enab
the Web to succeed? It was this question that motivated o
development of the REST architectural style.

3 REPRESENTATIONAL STATE TRANSFER (REST)
The Representational State Transfer (REST) style is
abstraction of the architectural elements within a distribut
hypermedia system. Perry and Wolf [17] distinguish thre
classes of architectural elements: processing eleme
(a.k.a., components), data elements, and connect
elements (a.k.a., connectors). REST ignores the details
component implementation and protocol syntax in order
focus on the roles of components, the constraints upon th
interaction with other components, and their interpretation of
significant data elements. It encompasses the fundame

he
a

ard
va).
he
,

o
es

e

: a
’s
a
In
an
f
t of
ny

set

s
of

st
are
eir
et.
er
a
tics

is
the
constraints upon components, connectors, and data that
define the basis of the Web architecture, and thus the essence
of its behavior as a network-based application.

Using the software architecture framework of [17], we first
define the architectural elements of REST and then examine
sample process, connector, and data views of prototypical
architectures to gain a better understanding of REST’s
design principles.

Data Elements
Unlike the distributed object style [7], where all data is
encapsulated within and hidden by the processing
components, the nature and state of an architecture’s data
elements is a key aspect of REST. The rationale for this
design can be seen in the nature of distributed hypermedia.

When a link is selected, information needs to be moved from
the location where it is stored to the location where it will be
used by, in most cases, a human reader. This is in distinct
contrast to most distributed processing paradigms [1, 12],
where it is often more efficient to move the “processing
entity” to the data rather than move the data to the processor.
A distributed hypermedia architect has only three
fundamental options: 1) render the data where it is located
and send a fixed-format image to the recipient; 2)
encapsulate the data with a rendering engine and send both
to the recipient; or, 3) send the raw data to the recipient along
with metadata that describes the data type, so that the
recipient can choose their own rendering engine.

Each option has its advantages and disadvantages. Option 1,
the traditional client/server style [20], allows all information
about the true nature of the data to remain hidden within the
sender, preventing assumptions from being made about the
data structure and making client implementation easier.
However, it also severely restricts the functionality of the
recipient and places most of the processing load on the
sender, leading to scalability problems. Option 2, the mobile
object style [12], provides information hiding while enabling
specialized processing of the data via its unique rendering
engine, but limits the functionality of the recipient to what is
anticipated within that engine and may vastly increase the
amount of data transferred. Option 3 allows the sender to
remain simple and scalable while minimizing the bytes
transferred, but loses the advantages of information hiding
and requires that both sender and recipient understand the
same data types.

REST provides a hybrid of all three options by focusing on a
shared understanding of data types with metadata, but
limiting the scope of what is revealed to a standardized
interface. REST components communicate by transferring a
representation of the data in a format matching one of an
evolving set of standard data types, selected dynamically
based on the capabilities or desires of the recipient and the
nature of the data. Whether the representation is in the same
format as the raw source, or is derived from the source,

remains hidden behind the interface. The benefits of t
mobile object style are approximated by sending
representation that consists of instructions in the stand
data format of an encapsulated rendering engine (e.g., Ja
REST therefore gains the separation of concerns of t
client/server style without the server scalability problem
allows information hiding through a generic interface t
enable encapsulation and evolution of services, and provid
for a diverse set of functionality through downloadabl
feature-engines.

Resources and Resource Identifiers
The key abstraction of information in REST is aresource.
Any information that can be named can be a resource
document or image, a temporal service (e.g. “today
weather in Los Angeles”), a collection of other resources,
moniker for a non-virtual object (e.g. a person), and so on.
other words, any concept that might be the target of
author’s hypertext reference must fit within the definition o
a resource. A resource is a conceptual mapping to a se
entities, not the entity that corresponds to the mapping at a
particular point in time.

More precisely, a resourceR is a temporally varying
membership functionMR(t), which for timet maps to a set of
entities, or values, which are equivalent. The values in the
may beresource representationsand/orresource identifiers.
A resource can map to the empty set, which allow
references to be made to a concept before any realization
that concept exists — a notion that was foreign to mo
hypertext systems prior to the Web [14]. Some resources
static in the sense that, when examined at any time after th
creation, they always correspond to the same value s
Others have a high degree of variance in their value ov
time. The only thing that is required to be static for
resource is the semantics of the mapping, since the seman
is what distinguishes one resource from another.

For example, the “authors’ preferred version” of this paper
a mapping that has changed over time, whereas

Table 1: REST Data Elements

Data Element Modern Web Examples

resource the intended conceptual target of a
hypertext reference

resource identifier URL, URN

representation HTML document, JPEG image

representation
metadata

media type, last-modified time

resource metadata source link, alternates, vary

control data if-modified-since, cache-control

data
).
e

ure
oth

ed

en
the
ize
e
be

se

en
ted
the
the

of
ote

a
hat
lue
le
t the

nd
of
dia

are
re
to

r-
m.

an
nt
l
of
er
be

r a
s
t
or
he
an
ns
be
“published version in the proceedings” is static. These are
two distinct resources, even though they map to the same
value at some point in time. The distinction is necessary so
that both resources can be identified and referenced
independently. A similar example from software engineering
is the separate identification of a version-controlled source
code file when referring to the “latest revision”, “revision
number 1.2.7”, or “revision included with the Orange
release.”

This abstract definition of a resource enables key features of
the Web architecture. First, it provides generality by
encompassing many sources of information without
artificially distinguishing them by type or implementation.
Second, it allows late binding of the reference to a
representation, enabling content negotiation to take place
based on characteristics of the request. Finally, it allows an
author to reference the concept rather than some singular
representation of that concept, thus removing the need to
change all existing links whenever the representation
changes (assuming the author used the right identifier).

REST uses aresource identifierto identify the particular
resource involved in an interaction between components.
REST connectors provide a generic interface for accessing
and manipulating the value set of a resource, regardless of
how the membership function is defined or the type of
software that is handling the request. The naming authority
that assigned the resource identifier, making it possible to
reference the resource, is responsible for maintaining the
semantic validity of the mapping over time (i.e., ensuring
that the membership function does not change).

Traditional hypertext systems [14], which typically operate
in a closed or local environment, use unique node or
document identifiers that change every time the information
changes, relying on link servers to maintain references
separately from the content. Since centralized link servers
are an anathema to its immense scale and multi-
organizational domain requirements, the Web relies instead
on the author choosing a resource identifier that best fits the
nature of the concept being identified. Naturally, the quality
of an identifier is often proportional to the amount of money
spent to retain its validity, which leads to broken links as
ephemeral (or poorly supported) information moves or
disappears over time.

Representations
REST components perform actions on a resource by using a
representation to capture the current or intended state of that
resource and transferring that representation between
components. Arepresentationis a sequence of bytes, plus
representation metadatato describe those bytes. Other
commonly used but less precise names for a representation
include: document, file, and HTTP message entity, instance,
or variant.

A representation consists of data, metadata describing the

data, and, on occasion, metadata to describe the meta
(usually for the purpose of verifying message integrity
Metadata is in the form of name-value pairs, where the nam
corresponds to a standard that defines the value’s struct
and semantics. Response messages may include b
representation metadata andresource metadata: information
about the resource that is not specific to the suppli
representation.

Control data defines the purpose of a message betwe
components, such as the action being requested or
meaning of a response. It is also used to parameter
requests and override the default behavior of som
connecting elements. For example, cache behavior can
modified by control data included in the request or respon
message.

Depending on the message control data, a giv
representation may indicate the current state of the reques
resource, the desired state for the requested resource, or
value of some other resource, such as a representation of
input data within a client’s query form, or a representation
some error condition for a response. For example, rem
authoring of a resource requires that the author send
representation to the server, thus establishing a value for t
resource that can be retrieved by later requests. If the va
set of a resource at a given time consists of multip
representations, content negotiation may be used to selec
best representation for inclusion in a given message.

The data format of a representation is known as amedia type
[18]. A representation can be included in a message a
processed by the recipient according to the control data
the message and the nature of the media type. Some me
types are intended for automated processing, some
intended to be rendered for viewing by a user, and a few a
capable of both. Composite media types can be used
enclose multiple representations in a single message.

The design of a media type can directly impact the use
perceived performance of a distributed hypermedia syste
Any data that must be received before the recipient can begin
rendering the representation adds to the latency of
interaction. A data format that places the most importa
rendering information up front, such that the initia
information can be incrementally rendered while the rest
the information is being received, results in much bett
user-perceived performance than a data format that must
entirely received before rendering can begin.

For example, a Web browser that can incrementally rende
large HTML document while it is being received provide
significantly better user-perceived performance than one tha
waits until the entire document is completely received pri
to rendering, even though the network performance is t
same. Note that the rendering ability of a representation c
also be impacted by the choice of content. If the dimensio
of dynamically-sized tables and embedded objects must

ely
ge

he

r to
oth

to
they
ay

k
ess
uce
n

hed
the
ed
h
n
ps
he
es
ed
oes
st.
in

e
y is

se
ach
t is
non-
he
be
red

ing
on-

rs
an
de
e

a
he
et
at
n
re
determined before they can be rendered, their occurrence
within the viewing area of a hypermedia page will increase
its latency.

Connectors
REST uses various connector types to encapsulate the
activities of accessing resources and transferring resource
representations. The connectors present an abstract interface
for component communication, enhancing simplicity by
providing a clean separation of concerns and hiding the
underlying implementation of resources and communication
mechanisms. The generality of the interface also enables
substitutability: if the users’ only access to the system is via
an abstract interface, the implementation can be replaced
without impacting the users. Since a connector manages
network communication for a component, information can
be shared across multiple interactions in order to improve
efficiency and responsiveness.

All REST interactions are stateless. That is, each request
contains all of the information necessary for a connector to
understand the request, independent of any requests that may
have preceded it. This restriction accomplishes four
functions: 1) it removes any need for the connectors to retain
application state between requests, thus reducing
consumption of physical resources and improving
scalability; 2) it allows interactions to be processed in
parallel without requiring that the processing mechanism
understand the interaction semantics; 3) it allows an
intermediary to view and understand a request in isolation,
which may be necessary when services are dynamically
rearranged; and, 4) it forces all of the information that might
factor into the reusability of a cached response to be present
in each request.

The connector interface is similar to procedural invocation,
but with important differences in the passing of parameters
and results. The in-parameters consist of request control
data, a resource identifier indicating the target of the request,
and an optional representation. The out-parameters consist
of response control data, optional resource metadata, and an
optional representation. From an abstract viewpoint the
invocation is synchronous, but both in and out-parameters
can be passed as data streams. In other words, processing can

be invoked before the value of the parameters is complet
known, thus avoiding the latency of batch processing lar
data transfers.

The primary connector types are client and server. T
essential difference between the two is that aclient initiates
communication by making a request, whereas aserver
listens for connections and responds to requests in orde
supply access to its services. A component may include b
client and server connectors.

A third connector type, thecacheconnector, can be located
on the interface to a client or server connector in order
save cacheable responses to current interactions so that
can be reused for later requested interactions. A cache m
be used by a client to avoid repetition of networ
communication, or by a server to avoid repeating the proc
of generating a response, with both cases serving to red
interaction latency. A cache is typically implemented withi
the address space of theconnector thatuses it.

Some cache connectors are shared, meaning that its cac
responses may be used in answer to a client other than
one for which the response was originally obtained. Shar
caching can be effective at reducing the impact of “flas
crowds” on the load of a popular server, particularly whe
the caching is arranged hierarchically to cover large grou
of users, such as those within a company’s intranet, t
customers of an Internet service provider, or Universiti
sharing a national network backbone. However, shar
caching can also lead to errors if the cached response d
not match what would have been obtained by a new reque
REST attempts to balance the desire for transparency
cache behavior with the desire for efficient use of th
network, rather than assuming that absolute transparenc
always required.

A cache is able to determine the cacheability of a respon
because the interface is generic rather than specific to e
resource. By default, the response to a retrieval reques
cacheable and the responses to other requests are
cacheable. If some form of user authentication is part of t
request, or if the response indicates that it should not
shared, then the response is only cacheable by a non-sha
cache. A component can override these defaults by includ
control data that marks the interaction as cacheable, n
cacheable or cacheable for only a limited time.

A resolvertranslates partial or complete resource identifie
into the network address information needed to establish
inter-component connection. For example, most URI inclu
a DNS hostname as the mechanism for identifying th
naming authority for the resource. In order to initiate
request, a Web browser will extract the hostname from t
URI and make use of a DNS resolver to obtain the Intern
Protocol address for that authority. Another example is th
some identification schemes (e.g., URN [21]) require a
intermediary to translate a permanent identifier to a mo

Table 2: REST Connector Types

Connector Modern Web Examples

client libwww, libwww-perl

server libwww, Apache API, NSAPI

cache browser cache, Akamai cache network

resolver bind (DNS lookup library)

tunnel SOCKS, SSL after HTTP CONNECT

.

T
ral
to
s,
gn

t
by
m.
ly
an
es
ed
of

s
of
of
re

eir
n

gh
s,

fore
ric
the
se.

of
e
be
an
ble
g
es,
st.
ce
y
for

he
r a
in

to
ch

ect
an
transient address in order to access the identified resource.
Use of one or more intermediate resolvers can improve the
longevity of resource references through indirection, though
doing so adds to the request latency.

The final form of connector type is atunnel, which simply
relays communication across a connection boundary, such as
a firewall or lower-level network gateway. The only reason it
is modeled as part of REST and not abstracted away as part
of the network infrastructure is that some REST components
may dynamically switch from active component behavior to
that of a tunnel. The primary example is an HTTP proxy that
switches to a tunnel in response to a CONNECT method
request, thus allowing its client to directly communicate with
a remote server using a different protocol, such as TLS, that
doesn’t allow proxies. The tunnel disappears when both ends
terminate their communication.

Component Types
REST components (processing elements) are typed by their
roles in an overall application action.

A user agentuses a client connector to initiate a request and
becomes the ultimate recipient of the response. The most
common example is a Web browser, which provides access
to information services and renders service responses
according to the application needs.

An origin server uses a server connector to govern the
namespace for a requested resource. It is the definitive
source for representations of its resources and must be the
ultimate recipient of any request that intends to modify the
value of its resources. Each origin server provides a generic
interface to its services as a resource hierarchy. The resource
implementation details are hidden behind the interface.

Intermediary components act as both a client and a server in
order to forward, with possible translation, requests and
responses. Aproxycomponent is an intermediary selected by
a client to provide interface encapsulation of other services,
data translation, performance enhancement, or security
protection. Agateway(a.k.a.,reverse proxy) component is
an intermediary imposed by the network or origin server to
provide an interface encapsulation of other services, for data
translation, performance enhancement, or security
enforcement. Note that the difference between a proxy and a

gateway is that a client determines when it will use a proxy

Architectural Views
Now that we have an understanding of the RES
architectural elements in isolation, we can use architectu
views [17] to describe how the elements work together
form an architecture. All three types of view—proces
connector, and data—are useful for illuminating the desi
principles of REST.

Process View
A process view of an architecture is primarily effective a
eliciting the interaction relationships among components
revealing the path of data as it flows through the syste
Unfortunately, the interaction of a real system usual
involves an extensive number of components, resulting in
overall view that is obscured by the details. Figure 1 provid
a sample of the process view from a REST-bas
architecture at a particular instance during the processing
three parallel requests.

The client/server [1] separation of concerns simplifie
component implementation, reduces the complexity
connector semantics, improves the effectiveness
performance tuning, and increases the scalability of pu
server components.

Since the components are connected dynamically, th
arrangement and function for a particular application actio
has characteristics similar to a pipe-and-filter style. Althou
REST components communicate via bidirectional stream
the processing of each direction is independent and there
susceptible to stream transducers (filters). The gene
connector interface allows components to be placed on
stream based on the properties of each request or respon

Services may be implemented using a complex hierarchy
intermediaries and multiple distributed origin servers. Th
stateless nature of REST allows each interaction to
independent of the others, removing the need for
awareness of the overall component topology, an impossi
task for an Internet-scale architecture, and allowin
components to act as either destinations or intermediari
determined dynamically by the target of each reque
Connectors need only be aware of each other’s existen
during the scope of their communication. A connector ma
cache the existence and capabilities of other components
performance reasons.

Connector View
A connector view of an architecture concentrates on t
mechanics of the communication between components. Fo
REST-based architecture, we are particularly interested
the constraints that define the generic resource interface.

Client connectors examine the resource identifier in order
select an appropriate communication mechanism for ea
request. For example, a client may be configured to conn
to a specific proxy component, perhaps one acting as

Table 3: REST Component Types

Component Modern Web Examples

origin server Apache httpd, Microsoft IIS

gateway Squid, CGI, Reverse Proxy

proxy CERN Proxy, Netscape Proxy, Gauntlet

user agent Netscape Navigator, Lynx, MOMspider

ly
sed

s
a
of

f a
n

e
oal
r

re
ed
),
of
the
by

no
all

een
an
ser

ns,
ets.
eir

e,
he
ing
al

nse
ir
annotation filter, when the identifier indicates that it is a local
resource. Likewise, a client can be configured to reject
requests for some subset of identifiers.

Although the Web’s primary transfer protocol is HTTP, the
architecture includes seamless access to resources that
originate on many pre-existing network servers, including
FTP [19], Gopher [2], and WAIS [8]. However, interaction
with these services is restricted to the semantics of a REST
connector. This constraint sacrifices some of the advantages
of other architectures, such as the stateful interaction of a
relevance feedback protocol likeWAIS, in order to retain the
advantages of a single, generic interface for connector
semantics. This generic interface makes it possible to access
a multitude of services through a single proxy connection. If
an application needs the additional capabilities of another
architecture, it can implement and invoke those capabilities
as a separate system running in parallel, similar to how the
Web architecture interfaces with “telnet” and “mailto”
resources.

Data View
A data view of an architecture reveals the application state as
information flows through the components. Since REST is
specifically targeted at distributed information systems, it
views an application as a cohesive structure of information
and control alternatives through which a user can perform a
desired task. For example, an on-line dictionary is one
application, as is a museum tour or a set of class notes.

Component interactions occur in the form of dynamical
sized messages. Small or medium-grain messages are u
for control semantics, but the bulk of application work i
accomplished via large-grain messages containing
complete resource representation. The most frequent form
request semantics is that of retrieving a representation o
resource (e.g., the “GET” method in HTTP), which can ofte
be cached for later reuse.

REST concentrates all of the control state into th
representations received in response to interactions. The g
is to improve server scalability by eliminating any need fo
the server to maintain an awareness of the client state beyond
the current request. An application’s state is therefo
defined by its pending requests, the topology of connect
components (some of which may be filtering buffered data
the active requests on those connectors, the data flow
representations in response to those requests, and
processing of those representations as they are received
the user agent.

An application reaches a steady-state whenever it has
outstanding requests; i.e., it has no pending requests and
of the responses to its current set of requests have b
completely received or received to the point where they c
be treated as a representation data stream. For a brow
application, this state corresponds to a “web page,” including
the primary representation and ancillary representatio
such as in-line images, embedded applets, and style she
The significance of application steady-states is seen in th

$ $Client+Cache:Client Connector: Server Connector: Server+Cache:

$ $

Figure 1: Process view of a REST-based architecture at one instance in time. A user agent is portrayed in themidst of
three parallel interactions: a, b, and c. The interactions were not satisfied by the user agent’s client connector cach
so each request has been routed to the resource origin according to the properties of each resource identifier and t
configuration of the client connector. Request (a) has been sent to a local proxy, which in turn accesses a cach
gateway found by DNS lookup, which forwards the request on to be satisfied by an origin server whose intern
resources are defined by an encapsulated object request broker architecture. Request (b) is sent directly to an origin
server, which is able to satisfy the request from its own cache.Request (c) is sent to a proxy that is capable of directly
accessing WAIS, an information service that is separatefrom the Web architecture, and translating the WAIS respo
into a format recognized by the generic connector interface. Each component is only aware of the interaction with the
own client or server connectors; the overall process topology is an artifact of our view.

Origin Servers

User Agent

$$

DNS

$DNS

Proxy

Proxy Gateway

wais

http

orb
�����

http

http

http http

a

b

c

����������
����������

ce
to
lso
ite
at
d

he
e
he

to
ork
e
of
tion.

age
d
r

as
n
e

ons
ed,
n
es
ld
P
.

en
he

s
f
al
e
ta,

n
r’s

e is
en

tire
lar
d
ry

o
e
tate
est
at
to
impact on both user-perceived performance and the
burstiness of network request traffic.

The user-perceived performance of a browser application is
determined by the latency between steady-states: the period
of time between the selection of a hypermedia link on one
web page and the point when usable information has been
rendered for the next web page. The optimization of browser
performance is therefore centered around reducing this
latency, which leads to the following observations:

• The most efficient network request is one that doesn’t use
the network. In other words, reusing a cached response
results in the best performance. Although use of a cache
adds some latency to each individual request due to
lookup overhead, the average request latency is
significantly reduced when even a small percentage of
requests result in usable cache hits.

• The next control state of the application resides in the
representation of the first requested resource, so
obtaining that first representation is a priority.

• Incremental rendering of the first non-redirect response
representation can considerably reduce latency, since
then the representation can be rendered as it is being
received rather than after the response has been
completed. Incremental rendering is impacted by the
design of the media type and the early availability of
layout information (visual dimensions of in-line objects).

The application state is controlled and stored by the user
agent and can be composed of representations from multiple
servers. In addition to freeing the server from the scalability
problems of storing state, this allows the user to directly
manipulate the state (e.g., a Web browser’s history),
anticipate changes to that state (e.g., link maps and
prefetching of representations), and jump from one
application to another (e.g., bookmarks and URI-entry
dialogs).

The model application is therefore an engine that moves
from one state to the next by examining and choosing from
among the alternative state transitions in the current set of
representations. Not surprisingly, this exactly matches the
user interface of a hypermedia browser. However, the style
does not assume that all applications are browsers. In fact,
the application details are hidden from the server by the
generic connector interface, and thus a user agent could
equally be an automated robot performing information
retrieval for an indexing service, a personal agent looking for
data that matches certain criteria, or a maintenance spider
busy patrolling the information for broken references or
modified content [9].

4 MATCHING AN ARCH ITECTURE TO ITS STYLE
In an ideal world, the implementation of a software system
would exactly match its design. Some features of the modern
Web architecture do correspond exactly to their design

criteria in REST, such as the use of URI [6] as resour
identifiers and the use of Internet media types [18]
identify representation data formats. However, there are a
some aspects of the modern Web protocols that exist in sp
of the architectural design, due to legacy experiments th
failed (but must be retained for backwards compatibility) an
extensions deployed by developers unaware of t
architectural style. REST provides a model not only for th
development and evaluation of new features, but also for t
identification and understanding of broken features.

HTTP [10] has a central role in determining the capabilities
and limitations of the Web architecture. HTTP is designed
extend the generic connector interface across a netw
connection. As such, it is intended to match th
characteristics of that interface, including the delineation
parameters as control data, metadata, and representa
However, two of the most significant limitations of the
HTTP/1.x protocol family are that it fails to syntactically
distinguish between representation metadata and mess
control information (both transmitted as header fields) an
does not allow metadata to be effectively layered fo
message integrity checks. REST identified these
limitations in the protocol early in the standardizatio
process, anticipating that they would lead to problems in th
deployment of other features, such as persistent connecti
and digest authentication. Workarounds were develop
including a new header field to identify per-connectio
control data that is unsafe to be forwarded by intermediari
and an algorithm for canonical treatment of header fie
digests, but more efficient solutions must wait until an HTT
without backwards compatibility restraints can be deployed

An example of where an inappropriate extension has be
made to the protocol to support features that contradict t
desired properties of the generic interface is the introduction
of site-wide state information in the form of HTTP cookie
[15]. Cookie interaction failed to match REST’s model o
distributed application state, resulting in substanti
confusion for the typical browser application. A cooki
could be assigned by the origin server as opaque da
typically containing an array of user-specific configuratio
choices or a token to be matched against the serve
database on future requests. The problem is that a cooki
defined as being attached to any future requests for a giv
set of resource identifiers, usually encompassing an en
site, rather than being associated with the particu
application state (the set of currently rendere
representations) on the browser. When the browser’s histo
functionality (the “Back” button) is subsequently used t
back-up to a view prior to that reflected by the cookie, th
browser’s application state no longer matches the stored s
represented within the cookie. Therefore, the next requ
sent to the same server will contain a cookie th
misrepresents the current application context, leading
confusion on both sides.

tual

eb
.,
r,

ion
ir
uch
e
ls,
at
t of

of
ith

is
ing
an
ny
n
lly
n
e
ush

s

le
ic
to
on
est

is
ld

he
e
ons,

t
ral
al
ted
me

is
d

ge-
ks.
ds.
es
ing,
Architectural mismatches are not limited to HTTP.
Introduction of “frames” to the Hypertext Markup Language
(HTML) caused similar confusion within an application
state. Frames allow a browser window to be partitioned into
subwindows, each with its own navigational state. Link
selections within a subwindow are indistinguishable from
normal transitions, but the resulting response representation
is rendered within the subwindow instead of the full browser
application workspace. This was fine provided that no link
exited the realm of information that was intended for
subwindow treatment, but as soon as that did occur the user
would find themselves viewing one application wedged
within the subcontext of another application.

In both these cases, the failure was in providing indirect
application state that could not be managed or interpreted by
the user agent. A design that placed this information within a
primary representation that informed the user agent on how
to manage the hypermedia workspace for a specified realm
of resources could have accomplished the same tasks without
violating the REST constraints, leading to both a better user
interface and less interference with caching.

5 RELATED WORK
Garlan and Shaw [13] provide an introduction to software
architecture research and describe several “pure” styles.
Their work differssignificantly from the framework of Perry
and Wolf [17] used in this paper due to a lack of
consideration for data elements. As observed above, the
characteristics of data elements are fundamental to
understanding the modern Web architecture — it simply
cannot be adequately described without them. The same
conclusion can be seen in the comparison of mobile code
paradigms by Fuggetta, et al. [12], where the analysis of
when to go mobile depends on active comparison of the size
of the code that would be transferred versus the pre-
processed information that would otherwise be transferred.

Bass, et al. [3] devote a chapter on architecture for the World
Wide Web, but their description only encompasses the
implementation architecture within the CERN/W3C-
developed libwww (client and server libraries) and Jigsaw
software. Although those implementations reflect some of
the design constraints of REST, having been developed by
people familiar with the intended architectural style, the real
WWW architecture is independent of any single
implementation. The Web is defined by its standard
interfaces and protocols, not how those interfaces and
protocols are implemented in a given piece of software.

The REST style draws from many preexisting distributed
process paradigms [1, 12], communication protocols, and
software fields. REST component interactions are structured
in a layered client-server style, but the added constraints of
the generic resource interface create the opportunity for
substitutability and inspection by intermediaries. Requests
and responses have the appearance of a remote invocation

style, but REST messages are targeted at a concep
resource rather than an implementation identifier.

Several attempts have been made to model the W
architecture as a form of distributed file system (e.g
WebNFS) or as a distributed object system [16]. Howeve
they exclude various Web resource types or implementat
strategies as being “not interesting,” when in fact the
presence invalidates the assumptions that underlie s
models. REST works well because it does not limit th
implementation of resources to certain predefined mode
allowing each application to choose an implementation th
best matches its own needs and enabling the replacemen
implementations without impacting the user.

The interaction method of sending representations
resources to consuming components has some parallels w
event-based integration (EBI) styles. The key difference
that EBI styles are push-based. The component contain
the state (equivalent to an origin server in REST) issues
event whenever the state changes, whether or not a
component is actually interested in or listening for such a
event. In the REST style, consuming components usua
pull representations. Although this is less efficient whe
viewed as a single client wishing to monitor a singl
resource, the scale of the Web makes an unregulated p
model infeasible.

The principled use of the REST style in the Web, with it
clear notion of components,connectors, and representations,
relates closely to the C2 architectural style [22]. The C2 sty
supports the development of distributed, dynam
applications by focusing on structured use of connectors
obtain substrate independence. C2 applications rely
asynchronous notification of state changes and requ
messages. As with other event-based schemes, C2
nominally push-based, though a C2 architecture cou
operate in REST’s pull style by only emitting a notification
upon receipt of a request. However, the C2 style lacks t
intermediary-friendly constraints of REST, such as th
generic resource interface, guaranteed stateless interacti
and intrinsic support for caching.

6 CONCLUSIONS AND FUTURE WORK
The World Wide Web is arguably the world’s larges
distributed application. Understanding the key architectu
principles underlying the Web can help explain its technic
success and may lead to improvements in other distribu
applications, particularly those that are amenable to the sa
or similar methods of interaction.

For network-based applications, system performance
dominated by network communication. For a distribute
hypermedia system, component interactions consist of lar
grain data transfers rather than computation-intensive tas
The REST style was developed in response to those nee
Its focus upon the generic connector interface of resourc
and representations has enabled intermediate process

.

ed

e

t
.

,
xt

,
d

ng

e

I

a

t

f

ol.

r

y,
ed
caching, and substitutability of components, which in turn
has allowed Web-based applications to scale from 100,000
requests/day in 1994 to600,000,000 requests/day in 1999.

The REST architectural style has been validated through six
years of development of the HTTP/1.0 and HTTP/1.1
standards, elaboration of the URI and relative URL
standards, and successful deployment of several dozen
independently developed, commercial-grade software
systems within the modern Web architecture. Future work
will focus on extending the architectural guidance toward the
development of a replacement for the HTTP/1.x protocol,
using a more efficient tokenized syntax, but without losing
the desirable properties identified by REST. There has also
been some interest in extending REST to consider variable
request priorities, differentiated quality-of-service, and
representations consisting of continuous data streams, such
as those generated by broadcast audio and video sources.

ACKNOWLEDGEMENTS
The Web’s architectural style was developed iteratively over
a four year period, but primarily during the first six months
of 1995. It has been influenced by countless discussions with
researchers at UCI, staff at the World Wide Web Consortium
(W3C), and engineers within the HTTP and URI working
groups of the IETF. We would particularly like to thank Tim
Berners-Lee, Henrik Frystyk Nielsen, Dan Connolly, Dave
Raggett, Rohit Khare, Jim Whitehead, Larry Masinter, and
Dan LaLiberte for many thoughtful conversations regarding
the nature and goals of the WWW architecture. We also
thank the anonymous reviewers for their comments.

Effort sponsored by the Defense Advanced Research
Projects Agency, and Airforce Research Laboratory, Air
Force Materiel Command, USAF, under agreement number
F30602-97-2-0021. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Airforce Research Laboratory or the U.S.
Government.

REFERENCES
1. Andrews, G. Paradigms for process interaction in distrib-

uted programs.ACM Computing Surveys 23, 1 (Mar.
1991), pp. 49–90.

2. Anklesaria, F., et al. The Internet Gopher protocol (a
distributed document search and retrieval protocol).
Internet RFC 1436, Mar. 1993.

3. Bass, L., P. Clements, and R. Kazman.Software
Architecture in Practice. Addison Wesley, 1998.

4. Berners-Lee, T. WWW: Past, present, and future.
Computer 29, 10 (Oct. 1996), pp. 69–77.

5. Berners-Lee, T., R.T. Fielding, and H.F. Nielsen
Hypertext Transfer Protocol — HTTP/1.0.Internet RFC
1945, May 1996.

6. Berners-Lee, T., R.T. Fielding, and L. Masinter. Uniform
Resource Identifiers (URI): Generic syntax.Internet
RFC 2396, Aug. 1998.

7. Chin, R.S., and S.T. Chanson. Distributed object-bas
programming systems.ACM Computing Surveys 23, 1
(Mar. 1991), pp. 91–124.

8. Davis, F., et. al. WAIS interface protocol prototyp
functional specification (v.1.5). Thinking Machines
Corporation, Apr. 1990.

9. Fielding, R.T. Maintaining distributed hypertex
infostructures: Welcome to MOMspider’s web
Computer Networks and ISDN Systems 27, 2 (Nov.
1994), pp. 193¦–204.

10. Fielding, R.T., J. Gettys, J.C. Mogul, H.F. Nielsen
L. Masinter, P. Leach, and T. Berners-Lee. Hyperte
Transfer Protocol — HTTP/1.1.Internet RFC 2616, June
1999. [Obsoletes RFC 2068, Jan. 1997.]

11. Fielding, R.T., E.J. Whitehead Jr., K.M. Anderson
G. Bolcer, P. Oreizy, and R.N. Taylor. Web-base
development of complex information products.Comm. of
the ACM 41, 8 (Aug. 1998), pp. 84–92.

12. Fuggetta, A., G.P. Picco, and G. Vigna. Understandi
code mobility. IEEE Transactions on Software
Engineering 24, 5 (May 1998), pp. 342–361.

13. Garlan, D., and M. Shaw. An introduction to softwar
architecture. Ambriola & Tortola (eds.),Advances in
Software Engineering & Knowledge Engineering, vol. I,
World Scientific Pub Co., 1993, pp. 1–39.

14. Grønbaek, K., and R.H. Trigg. Design issues for
Dexter-based hypermedia system.Communications of
the ACM 37, 2 (Feb. 1994), pp. 41–49.

15. Kristol, D., and L. Montulli. HTTP State Managemen
Mechanism.Internet RFC 2109, Feb. 1997.

16. Manola, F. Technologies for a Web object model.IEEE
Internet Computing 3, 1 (Jan.-Feb. 1999), pp. 38–47.

17. Perry, D.E., and A. Wolf. Foundations for the study o
software architecture. ACM SIGSOFT Software
Engineering Notes 17, 4 (Oct. 1992), pp. 40–52.

18. Postel, J. Media type registration procedure.Internet
RFC 1590, Nov. 1996.

19. Postel, J., and J. Reynolds. File Transfer Protoc
Internet STD 9, RFC 959, Oct. 1985.

20. Sinha, A. Client-server computing.Communications of
the ACM 35, 7 (July 1992), pp.77–98.

21. Sollins, K., and L. Masinter. Functional requirements fo
Uniform Resource Names.Internet RFC 1737, Dec.
1994.

22. Taylor, R.N., N. Medvidovic, K.M. Anderson,
E.J. Whitehead Jr., J.E. Robbins, K.A. Nies, P. Oreiz
and D.L. Dubrow. A component- and message-bas
architectural style for GUI software.IEEE Transactions
on Software Engineering 22, 6 (Jun. 1996), pp. 390–406.

	Principled Design of the Modern Web Architecture
	ABSTRACT
	Keywords

	1 INTRODUCTION
	2 WWW DOMAIN CHARACTERISTICS
	3 REPRESENTATIONAL STATE TRANSFER (REST)
	Data Elements
	Resources and Resource Identifiers
	Representations

	Connectors
	Component Types
	Architectural Views
	Process View
	Connector View
	Data View

	4 MATCHING AN ARCHITECTURE TO ITS STYLE
	5 RELATED WORK
	6 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

