. Articles

Resource-Oriented Architecture: The Rest of REST

Author: Brian Sletten

Series Introduction

Think for a moment, if you can, back to a time before the Web. Imagine trying to explain the
impending changes to your hapless contemporaries. It is likely they would simply not be able to
fathom the impacts that the Web's emergence would have on nearly every aspect of their lives. In
retrospect, it feels like a tsunami caught us off-guard and forever altered the landscape around us.
The reality is more pedestrian, however. It was a deliberate series of technical choices that built upon
each other that yielded the results we have experienced.

Now, pause and reflect upon the idea that you are probably in a similar position to those incredulous
pre-Web types you were just trying to enlighten. Unless you have been paying close attention, you
are about to be caught off-guard again as it feels like a new wave crashes upon our economic, social,
technological and organizational landscapes. While the resulting changes will feel like they occur
overnight, the reality is that they have been in the works for years and are just now producing
tangible results. This new wave is about a Web that has evolved beyond documents into Webs of
Data, both personal and private. We will no longer focus on information containers, but on
information itself and how it is connected.

This wave has been in the works for years and is again being driven by the deliberate adoption of
specific choices and technologies. These choices are combining to solve the problems caused by the
inexorable march of technological change, business flux, new and varied data sources and the
ubiquitous, expensive and failure-prone efforts that have cost millions and delivered insufficient
value. Web Services and Service-Oriented Architectures (SOA) were supposed to be part of the
answer, but the elegance of their visions have been forever stained by the inelegance of their
technical solutions.

The beauty is that we are not starting from scratch. We are building upon the technology we have in
place to grow these data webs organically. We can wrap our databases, libraries, services and other
content sources with a new set of abstractions that will help us off the treadmill we have been on.
We are integrating the public Web of Data with our own, privately held data. The incremental
adoption of these technologies is yielding new capabilities that will, in turn, unlock further
capabilities.

11 InfoQ Explores: REST


http://www.infoq.com/author/Brian-Sletten

This is the first article in a new series to highlight the evolution of information-oriented systems that
got us to where we are and provide a roadmap to where we are going. Despite what it may seem on
the surface, these choices are neither ad hoc nor esoteric, but rather foundational decisions based
on a long tradition of academia and applied engineering.

We will start by revisiting the REpresentational State Transfer (REST) architectural style. Oft quoted
and even more often misunderstood, this manner of building networked software systems allows us
to merge our documents, data and information-oriented services into a rich, logical ecosystem of
named resources. From there, we will introduce the vision of the Semantic Web and walk through its
core technologies represented by a flexible and extensible data model and the ability to query it. We
will see how to incorporate relational data, content from documents, spreadsheets, RSS feeds, etc.
into a rich web of reusable content.

After we present the basics, we will walk through a variety of successful efforts building on these
technologies and then return to reclaiming the vision promised to us by proponents of Web Services
technologies. We will describe a process where we can achieve something of a Unified Theory of
Information Systems; one that not only handles, but embraces the kind of technical and social
change that has been painful and intractable to manage in the past.

There has been too much hype surrounding the Semantic Web, but there have also been a steady
stream of quiet successes. This series will be a pragmatic guide into both new and familiar territory.
We will connect the technologies in deeper ways than perhaps you have seen before. We will
highlight events and actions by companies, government organizations and standards bodies that
indicate that this is happening and it will change everything. We will show how a very large
difference in your system implementation can often be made through subtle shifts in perspective
and adoption of standards that are designed to facilitate change.

The first step, is to embrace a common naming scheme for all aspects of our infrastructure. A
Service-Only Architecture usually ignores the data that flows through it. At the end of the day, our
organizations care about information first and foremost. REST and the Web Architecture puts this
priority up front and lays the foundation for the remainder of our discussion.

The Rest of REST

It has become fashionable to talk about the REpresentational State Transfer (REST) as something of a
weapon in the War On Complexity. The enemies in this war, according to some, are SOAP and the
Web Services technology stack that surrounds it. This Us vs Them rhetoric brings passion to the table,
but rarely meaningful dialogue so people remain confused as to the underlying message and why it is
important. The goal is not to replace SOAP; the goal is to build better systems.

REST is not even a direct replacement for SOAP. It is not some kind of technology of convenience; a
simple solution for invoking Web Services through URLs. The management of information resources
is not the same thing as invoking arbitrary behavior. This confusion leads people to build "RESTful"
solutions that are neither RESTful, nor good solutions.

12 InfoQ Explores: REST



interfaces that simply expose arbitrary services via URLs will not yield the same benefits we have
seen so successfully in the explosion of the Web. It takes a richer series of interactions and system
partitioning to get the full results.

Most people understand that REST involves requesting and supplying application state of information
resources through URLs via a small number of verbs. You retrieve information by issuing GET
requests to URLs, you create or update via POST and PUT, and remove information via DELETE
requests.

This summary is not incorrect, but it leaves too much out. The omissions yield degrees of freedom
that unfortunately often allow people to make the wrong decisions. In this gap, people create URLs
out of verbs which eliminates the benefit of having names for "things". They think REST is just about
losing the discoverability of the hypertext engine. Perhaps most unforgivably, they create URLs tied
solely to particular data formats, making premature decisions for clients about the shape of the
information.

Understanding the full implications of REST will help you avoid these problems; it will help you to
develop powerful, flexible and scalable systems. But it is also the beginning of a new understanding
of information and how it is used. Upon this foundation of Web architecture, the application of the
remaining technologies of the Semantic Web will yield unprecedented power in how we interact
with each other as individuals, governments, organizations and beyond. This is why we begin with a
deeper dive into the parts of REST that many people do not understand and therefore do not discuss.
These topics include the implications of:

® URLs as identifiers

® Freedom of Form

® |Logically-connected, Late-binding Systems
o

Hypertext as the Engine of State Transfer (HATEOS)

URLSs as Identifiers

We have already established that most people know about URLs and REST. It seems clear that they
understand that a URL is used for invoking a service, but it is not clear that they get the larger sense
of a URL as a name for information. Names are how we identify people, places, things and concepts.
If we lack the ability to identify, we lack the ability to signify. Imagine Abbott and Costello's infamous

something we care about within a context. Having a name and a common context allows us to make

13 InfoQ Explores: REST



reference to named things out of that context.

is a URI that has no location information in it; nothing but name is involved. The good news is that
these names will never break. The bad news is that there is no resolution process for them. An
example of a URN is an ISBN number for a book:

urn:isbn:0307346617

In order to find more information about this book, you would have to find a service that allows you
to look up information based on the ISBN number.

If nothing about the context of our systems and information ever changed, we would probably
always want to include resolution information in our resource names so we could resolve them. But
anyone who has been handed a broken link knows we want longer-lived names for really important
stuff. Looking at our history of using URLs, we have done some silly things when we created ones
such as:

http://someserver.com/cgi-bin/foo/bar.pl
http://someserver.com/ActionServlet?blah=blah
http://someserver.com/foo/bar.php

The problem with these URLs is that the technology used to produce a result is irrelevant to the
consumer of information. There is no good reason to create URLs like that. The focus should be on
the information, not the technology. Implementation technologies change over time. If you abandon
them, for instance, any system that has a link to the Perl, Servlet or PHP-based URL will break. We
will address some infrastructure to solve this problem in future articles, for now, we will just try to
make careful choices in the names we give our information resources.

Despite being fragile, the URL scheme does allow us to disambiguate information references in a
global context.

http://companyl.com/customer/123456

is distinct and distinguishable from
http://company2.com/customer/123456

in ways that a decontextualized identifier like '123456' is not.

To ground the concept into a larger information systems framework, you can think of a URL as a
primary key that is not specific to a particular database. We can make references to an item via its
URL in dozens of different databases, documents, applications, etc. and know that we are referring to
the same thing because we have a unique name in a global context. We will use this property in
future discussions to describe and connect RESTful systems to other content and metadata.

14 InfoQ Explores: REST



The next aspect of URLs that bears discussion is their universal applicability. We have a common
naming scheme that allows us to identify:

® documents (reports, blogs, announcements)

® data (results, instance information, metadata)

® services (REST!)

® concepts (people, organizations, domain-specific terms)

We do not need to come up with a different mechanism to refer to each different category of things.
A careful application of some specific guidelines allows us to blur the distinctions between these
things which brings us to the last point for now about URLs. Not only are these names useful in order
to refer to information we care about, but systems that receive these references can simply ask for
them. The 'L' in URL (locator) gives us the capacity to resolve the thing, not knowing anything else
about it. We can usually invoke the same basic operations on everything we can name. Issuing a GET
request to a URL representing a document, some data, a service to produce that data or an abstract,
non-network-addressable concept all work fundamentally the same way. For those things we have
the permission to manipulate, we can also create, modify or delete them using similar means.

Freedom of Form

Our experience of the Web has been somewhat passive with respect to the shape of information.
When we click on a link, we expect the content to come back in a particular form, usually HTML. That
is fine for many types of information, but the architecture supports a much more conversational
style allowing clients to request information in a preferred form.

To understand why this is useful, consider a company's sales report. It is easy to imagine this being
useful to executives, sales people, other employees, clients and investors as an indication of how a
company is performing. A possible name for such a report could include the year and the quarter in
the URL:

http://companyl.com/report/sales/2009/qgtr/3
We might contrast this with a sales report for the month of March:
http://companyl.com/report/sales/2009/month/3

Both are good, logical names that are unlikely to break over time. It is a compelling vision that
people could simply type such a URL into a browser and get the information they seek rendered as
HTML. The reports could be bookmarked, e-mailed, linked to, etc.; all the things we love about the
Web.

The problem is that the information is locked into its rendered form (until we introduce technologies
like GRDDL and RDFa later in this series!). We used to try to scrape content from pages, but gave up
in disgust. As the page layout changes, our scripts break.

15 InfoQ Explores: REST



If you were a programmer for this company and wanted to get to the information directly, you might
like to request it as XML. You could get back raw, structured data that you could validate against a
schema. HTTP and REST make this trivial as long as the server knows how to respond. By passing in
an "Accept: application/xml" header to your request, you could indicate a preference (or
requirement) for XML. On success, you will get back a byte-stream with a MIME type indicating that
your request has been honored. On failure, the server will indicate via a 406 Error that it cannot help
you. In that case, you might want to contact the department responsible for this information and
request they add the support you need; something they can do without breaking any existing clients.
If you were a business analyst, you might think that XML has sharp points and can hurt you, so you
might like to request it back as a spreadsheet, a format that is easily incorporated into your existing
workflows, tools and processes.

The point is that the logical name for the report is easily converted into various forms at the point it
is requested. It is equally easy to run systems that accept modifications back in the various forms.
The client has no visibility into how the information is actually stored, they just know that it works
for them. This freedom is wholly underused by people building RESTful systems. When they stand up
a service and decide that they will only return XML, they miss the potential value REST has to an
organization.

Because many developers are either unaware of content negotiation or find it difficult to test in a
browser, they define different URLs for the different formats:

http://companyl.com/report/sales/2009/qgtr/3/report.html
http://companyl.com/report/sales/2009/qtr/3/report.xml
http://companyl.com/report/sales/2009/gtr/3/report.xls

This developer convenience becomes a limitation once you escape the confines of a particular use. In
essence, we now have three information resources, not one that can be rendered in different forms.
Not only does this fork the identity in the global context, it also prematurely commits other clients to
a particular form. If you pass a reference to a URL as part of a workflow or orchestration you are
robbing the upstream clients from the freedom to choose the form of the data.

There are several ways to test a proper RESTful service without using a browser, for example:

curl -H "Accept: application/xml" -0
http://companyl.com/report/sales/2009/qtr/3

using the popular curl program. Any reasonable HTTP client will provide similar capabilities.

The benefits of supporting a rich ecosystem of negotiable data forms may not be immediately
obvious, but once you wrap your head around it, you will see it as a linchpin toward long-lived,
flexible systems that favor the client, not the developer.

16 InfoQ Explores: REST



Logically-Connected, Late-Binding Systems

Once you commit to good, logical names for your information resources, you will discover some
additional benefits that fall out of these decisions. Named references can safely and efficiently be
passed back as results without returning actual data. This has strong implications for large and
sensitive data sets, but it also makes possible technical and architectural migration.

For the same reasons pointers are useful in languages like C and C++, URLs as references to data are
more compact and efficient to hand off to potential consumers of information. Large data sets such
as financial transactions, satellite imagery, etc. can be referenced in workflows without requiring all
participants to suffer the burden of handling the large content volume.

Any orchestration that touches actual data must consider the security implications of passing it on to
other systems. It quickly becomes untenable to provide perfect knowledge of who is allowed to do
what at every step of a process. If a reference is passed from step to step, it is up to the information
source to enforce access. Some steps may not require access to the sensitive information and could
therefore be excluded from receiving it when they resolve the reference.

This means the late-binding resolution can factor in the full context of the request. A particular user
accessing a resource from one application might have a business need to see sensitive information.
The same person using a different application might not have a business justification to the same
data. A RESTful service could inspect session tokens and the like to enforce this access policy
declaratively. This level of specificity is required to prevent internal fraud, often the biggest risk in
systems that deal with sensitive content. The details of such a system are going to be
implementation-specific and are largely orthogonal to the process of naming and resolving
logically-named content.

Dependency on a logical connection allows clients to be protected against implementation changes.
When popular websites shift from one technology to another, they are usually successful at hiding
these changes from their users. RESTful services do the same thing. This gives us the freedom to
wrap legacy systems with logical interfaces and leave them in place until there is a business reason to
invest in a new implementation. When that happens, clients can be protected from being affected.

In addition to mediating technology changes, RESTful systems allow you to embrace a variant of
maintain strict content validation of what you accept and return. However, if you have an existing
client base that is providing you content in a given form, you are free to allow other clients to
provide different forms, different schemas, etc. without affecting the existing clients. Systems that
closely associate a contract with an endpoint tend not to have this freedom which makes them more
brittle and quickly fragmented.

17 InfoQ Explores: REST



Hypertext As the Engine of State Transfer (HATEOS)

As systems come across references to information resources, many people think there needs to be
some sort of description language to indicate what is possible or should be done with it. The reality
is that a well-considered RESTful system usually does not require this concept. This is difficult for
SOAP developers to accept, but it has to do with the constraints of the architectural style. Because
we treat information resources as things to manipulate through a uniform interface (the URL!) and
restrict our efforts to a small set of verbs, there really is no need to describe the service.

If you find yourself confused on this point, it is probably an architectural smell that you are conflating
manipulating resources with invoking arbitrary behavior. The REST verbs provide the full set of
operations to apply to an information resource. Certainly, you need to know what information is
being returned so you know how to process it, but that is what MIME types are for. While it is usually
preferable to reuse known types (application/xml, image/png, etc.), many developers do not realize
that they can create their own application-specific data types if necessary.

In the larger arc of this article series, we will address the problems of finding and binding arbitrary
resources using rich metadata. For now, we will simply keep in mind Roy's underscoring of the
importance of "hypertext as the engine of state transfer" (obliquely referred to as "HATEOS" by
RESTafarians). This is perhaps the most misunderstood portion of the thesis. To get its full implication,
we need to revisit how the Web works.

You type a URL into the browser and it issues an HTTP GET request for that resource. Invariably, the
server responds with a bytestream, a response code (usually 200 on success) and a MIME type
indicating that the response is HTML. The browser decides it knows how to handle this type and
parses the result into a document model of some sort. Within that model, it finds references to other
resources: links, images, scripts, style sheets, etc. It treats each one differently, but it discovers them
in the process of resolving the original resource. There is no service description; the browser, as a
client, simply knows how to parse the result.

The same mechanism should be employed for RESTful services. The URLs themselves should not be
"magical". A client should not be required to know how to parse a URL or have any special
knowledge of what one level in the hierarchy means over another one. RESTful clients should
retrieve a resource, investigate the returned MIME type and parse the result. As such, a client should
know how to parse the returned type.

For example, a client might receive a reference to the main RESTful service for the reporting service
we described above:

http://companyl.com/report/
If requested from a browser, it could return an HTML document that has references to:
http://companyl.com/report/sales

which the user could click through to find a list of years to browse. The point is that the browser has

18 InfoQ Explores: REST



no special knowledge of the URL structure, but it knows how to parse the result and present the
content to the user in a way she can explore.

The same can be true of other MIME type responses. For example, requesting the 2009 quarterly
reports as XML:

http://companyl.com/reports/sales/2009/gtr
could yield:
<reports>
<description>2009 Quarterly Reports</description>

<report name="First Quarter"
src="http://companyl.com/reports/sales/2009/qtr/1"/>

<report name="Second Quarter"
src="http://companyl.com/reports/sales/2009/gtr/2"/>

<report name="Third Quarter"
src="http://companyl.com/reports/sales/2009/qtr/3"/>

</reports>

You can think of the URL as a vector through an information space. Each level points you closer to
the ultimate resource. Different paths can yield the same results. The client will have to know how to
parse these results, but by giving the response an identifiable type, we can trigger the appropriate
parser. The structure can be spidered by descending through the references, or presented to a user
to browse through some kind of interface. A RESTful interface becomes a way for clients to ask for
information based on what they know. They start from a known or discovered point and browse the
information like you browse the Web.

This is what HATEQS refers to. The application state is transferred and discovered within the
hypertext responses. Just like the browser needs to know about HTML, images, sound files, etc., a
RESTful client will need to know how to parse the results of resolving a resource reference. However,
the entire process is simple, constrained, scalable and flexible -- exactly the properties we want from
a networked software system.

Many people build "RESTful" systems that require the clients to know beforehand what each level in
a URL means. Should the information get reorganized on the server side, clients of those systems will
break. Clients that truly embody HATEOS are more loosely-coupled from the servers they
communicate with.

19 InfoQ Explores: REST



Looking Forward

We struggle daily to solve the problems of rapidly changing domains, technologies, customer
demands and actionable knowledge. We spend too much time writing software to link what we learn
to what we know. Objects and databases have not kept pace with the changes we experience. We
need a new way of looking at the information we produce and consume that is extensible and less
fragile than the solutions of the past. We need technology to help us form consensus. We should not
have to achieve consensus in the form of common models before we can use our technologies.

In this article, we have introduced the series and have begun to look at how REST and Web
technologies can serve as the basis of a new information-oriented architecture. We have established
a naming scheme that allows us to unify references to all manner of content, services and
documents. Clients can leverage the freedom to negotiate information into the form they want. As
they resolve references, they can discover new content connected through new relationships.

This architectural style and the technologies surrounding the Semantic Web combine nicely to create
powerful, scalable, flexible software systems. Their capacity to create Webs of Data will have as
much impact on our lives as the Web has already had. This will be an information systems revolution
that will turn much of what we know on its head. It will not only reduce the cost of data integration,
but it will enable new business capabilities we can only begin to imagine.

We are moving into a world where information can be connected and used regardless of whether it
is contained in documents, databases or is returned as the results of a RESTful service. We will be
able to discover content and connect it to what we already know. We will be able to surface the data
currently hidden behind databases, spreadsheets, reports and other silos. Not only will we gain
access to this information, we will be able to consume it in the ways we want to.

This is one of the main, modest goals of the Semantic Web. Achieving it, as we are now able to do, is
starting to change everything.

Related Contents :

® JavaOne Semantic Web Panel

20 InfoQ Explores: REST



Tracking change and innovation in the enterprise software development community

InfoQ Explores

REST

Issue #1
February 2010

A compilation of works by several people, including:

Mark Little Gregor Roth Steve Vinoski
Savas Parastatidis Brian Sletten Jim Webber
Ian Robinson Stefan Tilkov

e

cul

InfoQ

Enterprise Software Development Community

InfoQ Explores: REST

Issue #1, March 2010

Chief Editor: Ryan Slobojan

Editors: Floyd Marinescu, Kevin Huo, Liu Shen

Except where otherwise indicated, entire contents

ue
(@]
@]
©
<
=
o
>
—+
©
N
o
=
o
=1
—h
(o]
O
()
o
3



