A FIRST TOUCH ON NOSQL SERVERS: COUCHDB

GENOVEVA VARGAS SOLAR, JAVIER ESPINOSA
CNRS, LIG-LAFMIA, FRANCE

Genoveva.Vargas@imag.fr; Javier.Espinosa@imag.fr

http://www.vargas-solar.com

http://imag.fr
http://imag.fr

ARCHITECTURE

HTTP
the access protocol

JavaScript
the query language

JSON
the storage format

| HTTP CLIENT

RE s
vView STORACE

EUG'M‘FJQE

jcu | '\srﬂ—j
[‘ij-lf_*,ﬁ |

DOWNLOADS

= For executing these examples download CouchDB:

® Binary version for windows

m http://wiki.apache.org/couchdb/Installing on Windows

= For communicating with the server we can use a browser or the tool cURL:

® cURL is a tool for transfering data from the server using different protocols including
HTTP

= http://curl.haxx.se/download.html

http://wiki.apache.org/couchdb/Installing_on_Windows
http://curl.haxx.se/download.html

COUCHDB (1)

® CouchDB is a document oriented DBMS,i.e., it is not relational:
= Without database schema
= Key-value model

m Distributed and fault tolerant

m Data are modeled as autocontained documents:

= A document is represented by a JSON structure with attributes of any
type
= Queries are done via JavaScript '

COUCHDB (2)

= Different data types are supported as add-in documets (video, audio, images,
etc.)

= Communication with applications and users is done via RESTful services:

m «Representational State Transfer» is a software client-server architecture model used for
distributed hypermedia systems

® The communication protocol HTTP:

Used the HTTP methods explicitly

Stateless

Exposes the structure via URIs

Data transfered are XML or JSON (for CouchDB) 5

INTERACTING WITH COUCHDB

HTTP Client — o Q

PUT /dbname/ID

il

peritor consulting 6

INTERACTING WITH COUCHDB

GET /dbname/ID

e ————
N

HTTP Client

JSON

Al

peritor consulting

INTERACTING WITH COUCHDB

CouchDB

m @ —

HTTP Client DELETE /dbname/ID =) ==

Al

peritor consulting 8

CREATING AND RETRIEVING

m Creating the database "albums™:

curl -X PUT http://localhost:5984/albums

m Creating the document "album|™:

curl -X PUT http://localhost:5984/albums/albuml -d @-

{
"artista": "Megadeth",
"titulo": "Endgame",
"anio": 2009
}
<EOF> // en Windows es “z y en Unix ~d

® Retrieving the created document:

curl -X GET http://localhost:5984/albums/albuml

UPDATING (1)

= For updating a document:
= Give the last version

® Otherwise an error (code 409) will be generated, as shown in the following example:

curl -X PUT http://localhost:5984/albums/albuml -d @-

{
"artista": "Megadeth",
"titulo": "Endgame",
"anio": 2010

}

NZ

UPDATING (2)

= The attribute "_rev" specifies the version that will be updated:

curl -X PUT http://localhost:5984/albums/albuml -d @-

{
" rev": "1-142438dc8c583cda2alf292c62291215",
"artista": "Megadeth",
"titulo": "Endgame",
"anio": 20160
}

NZ

DELETING (1)

m Delete the document "albumI";

= curl -X DELETE http://localhost:5984/albums/albuml?rev=2-d05127b44500ecl9a2e5a25adc610380

® [f you try to retrieve it, an error is generated:
= curl -X GET http://localhost:5984/albums/albuml

» {"error":"not_found","reason":"deleted"}

® You have access to the version generated by the deletion operation:

= curl -X GET http://localhost:5984/albums/albuml?rev=3-facl6c94309ed5ff842ffa89cc6048bl

» {"_id":"albuml"," rev":"3-facl6c94309ed5ff842ffa89cc6048bl"," deleted":true}

DELETING (2)

® We purge the document from the database:

curl -X POST -H "Content-Type: application/json" http://localhost:5984/albums/ purge
-d @-

{
"albuml": ["3-facl6c94309ed5ff842ffa89cc6048bl"]

® We try to query the version again:

" curl -X GET http://localhost:5984/albums/albuml?rev=3-facl6c94309ed5ff842ffa89cc6048bl

> "error":"not_found","reason":"missing"}

ATTACHMENTS (1)

= Any binary type can be stored by adding it to a document

m | et us create again "album|";

curl -X PUT http://localhost:5984/albums/albuml -d @-

{
"artista": "Megadeth", "titulo": "Endgame", "anio": 2010

® The method HTTP PUT is used for attaching a file to the document using the attribute
"cover.jpg":

curl -X PUT -H 'Content-Type: image/jpg' --data-binary @300px-Endgame_album_art.jpg
http://localhost:5984/albums/albuml/cover.jpg?rev="1- 8a@15dd26403219af66f@5542cb54@b2"

ATTACHMENTS (2)

= On adding an attachment to a document its version number changes:

= For adding an attachment it is imperative to specify the version number of the
document object

= Whe an attachment is created, the special attribute " _attachments” is created

= The method GET enables the retrieval of the attachment through the
corresponding attribute:

curl -X GET http://localhost:5984/albums/albuml/cover.jpg?rev="2-
3lelce62601laac5b9de7059788361641" > tmp.jpg

Views are useful for many purposes:

= Filtering the documents in your database to find those relevant to a particular process.

® Extracting data from your documents and presenting it in a specific order.

= Building efficient indexes (B-Trees)to find documents by any value or structure that resides in them.
® Use these indexes to represent relationships among documents.

= Views you can make all sorts of calculations on the data in your documents.

= E.g, if documents represent your company’s financial transactions, a view can answer the question of what the spending was in the

last week, month, or year.

DEFINING VIEWVS (1)

® Views are based on the working model
MapReduce:

® Map and reduce function are specified in
javascript

= Built-in views are provided

= curl -X GET

http://localhost:5984/albums/ _all doc
S

The map layer extracts the data from

the input and transforms the results into The shuffle/sort layer
key-value pairs. The key-value pairs are returns the key-value pairs
then sent to the shuffle/sort layer. sorted by the keys.

The reduce layer collects
the sorted results and performs
counts and totals before it returns

the final results.
Input . FleshiEs Final
data . result

Figure 1.2 The map and reduce functions are ways of partitioning large datasets into
smaller chunks that can be transformed on isolated and independent transformation
systems. The key is isolating each function so that it can be scaled onto many servers.

EXAMPLE: DEFINING AVIEW

curl -X PUT http://localhost:5984/albums/_design/vistasl -d @-

{
"language": "javascript",
"views": {
"por_anio": {
"map": "function(doc) { if(doc.anio) { emit(doc.anio, 1);}}",
"reduce": "function(keys, values, rereduce) {return sum(values);}"
}
}
}

COUNTING WORDS EXAMPLE

(URI, document) > (term, count)

See bob <1> bob 1
see bob throw ‘ bob i run <1> run
see spot run see <1,1> 1
throw 1 spot <1> see
See throw <1> 2
1 spot 1
spot 1 throw 1
run
1

Map Shuffle/Sort Reduce

QUERYING AVIEW

GET /dbname/_design/hats/_view/all?
include _docs=true

Eee——
e i —
|
|
-

HTTP Client

Al

peritor consulting 20

EXAMPLE: USING A VIEW

= Reduce values retrieved without considering the keys:

m curl http://localhost:5984/albums/ design/vistasl/ view/por _anio

m curl -X GET http://localhost:5984/albums/ design/vistasl/ view/por_anio

= Reduce the values retrieved considering the values of the different keys:

= curl
http://localhost:5984/albums/ design/vistasl/ view/por_anio?group=true

21

MANAGEMENT TOOLS

0 : complete interface for configuring ,
managing and monitoring a CouchDB instalation

o : management interface exported under a REST HTTP protocol

L : tools providing information and control of a
CouchDB instalation

m Use the REST API

= Can be used with scripts and management proceedures (failover, backups)

22

USING COUCHDB WITH JAVA (1)

= There are several projects that enable the use of CouchDB with Java

= Visit the following links:

= CouchDB4Java (http://github.com/mbreese/couchdb4i)

m JRelax (https://github.com/isterin/jrelax/wiki)

23

http://github.com/mbreese/couchdb4j
https://github.com/isterin/jrelax/wiki

USING COUCHDB WITH JAVA (2)

= CouchDB4Java is easy to use, you only have to download the application and integrate the JARs located in the folder lib

= Java code for connecting an application:

public static void main(String [] args) throws Exception {
Session s = new Session("localhost", 5984);

Database db = s.getDatabase("albums");

Document newdoc = new Document();

newdoc.put("artista", "Megadeth");

newdoc.put("titulo", "Endgame");

newdoc.put("anio", 2010);

db.saveDocument(newdoc, "albuml");

} 24

USING COUCHDB WITH JAVA (3)

JRelax
® For this case you have to download the project and its dependencies:

m Restlet 2.0 (http://www.restlet.org/)
m Jackson (JSON process - http://jackson.codehaus.org/)

= Particularly the following JARs:
® org.json.jar
® jackson-all-1.6.2.jar
m org.restlet.jar
m org.restlet.ext.json.jar

25

http://www.restlet.org/
http://jackson.codehaus.org/

USING COUCHDB WITH JAVA (4)

Java code for connecting a JRelax application
public static void main(String[] args) {
ResourceManager resourceMgr = new
DefaultResourceManager("http://localhost:5984");
List<String> dbs = resourceMgr.listDatabases();
for(String db : dbs) {
System.out.println(db);

}

Document doc = resourceMgr.getDocument("albums", "albuml");

System.out.println(doc.asJson());
}

26

EXAMPLE:ALBUM DB

Adding more documents to the Albums database

curl -X PUT http://localhost:5984/albums/albumd4 -d @-

{
"artista": "Pantera",
"titulo": "Reinventing the Steel",
"anio": 2009

}

curl -X PUT http://localhost:5984/albums/album5 -d @-

{
"artista": "Slayer",
"titulo": "South of Heaven",
"anio": 2009

}

27

BACKTO THEORY ...

28

