
Introduction to Distributed System!

1

Javier Espinosa, PhD!
javier.espinosa@imag.fr!

+Outline!
n  Distributed Systems

n  Definition and examples

n  Challenges

n  Case study: the World Wide Web

n  System Architectures

n  Elements

n  Layers model

n  N-Tier model

n  Case study: the Web Browser

n  Client-Server Model

n  Characteristics

n  Implementation

n  Example: RMI

+Distributed System!

3

n  Collection of (heterogeneous) networked computers which communicate
and coordinate their actions by passing messages

n  Characteristics

n  Appear to the user as a single computer

n  Concurrency (with or without share memory)

n  No global clock

n  Independent failures

A component may fail (crash) independently, leaving the others still running

+Why Distributed?!

4

5

Why Learning Distributed Systems?!

Everyone

Technicians

Engeenierees

Scientists

Funcionamiento general
(sistemas, aplicaciones distribuidas)

Utilización de sistemas, construcción
elemental de aplicaciones distribuidas

Principios y técnicas de base de los
sistemas. Programación concurrente

Principios de programación distribuida

(Además) Profundizar sobre los sistemas
(arquitectura interna) Introducción a la

Algorítmica distribuida. Modelado,
Evaluación de desempeño, seguridad

Arquitectura interna de herramientas
de construcción desde objetos hasta

componentes. Tolerancia a
fallas, QoS, Seguridad

Algorítmica paralela y distribuida,
aspectos fundamentales de la tolerancia a

fallas y la seguridad. Arquitectura de
sistemas. Servidores de alto desempeño

Práctica de la programación concurrente,
Utilización elemental de herramientas

(RMI, CORBA)

Programación avanzada de sistemas
(comunicación, etc.)

Administración de sistemas

Práctica avanzada de las herramientas
(J2EE, .NET, MOM, WEB Services)

Construcción, configuración, adaptación
de herramientas y de sistemas para dominios

Especializados (móvil, embarcados)

Según el proyecto de investigación

Principle Know-how

+Example: Internet (portion of it)!

6

intranet
ISP

desktop computer:

backbone

satellite link

server:

☎

network link:

☎

☎

☎

+Example: Intranet!

7

+Example: Mobile Environment!

8

Distributed System Examples (i) !

n  Index the entire content of the Web

n  ex. web pages, multimedia documents, books

n  Largest and most complex distributed system in history:

n  Physical infrastructure consisting of very large numbers of networked computers

located at data centers all around the world

n  Distributed storage system designed to support very large files and heavily

optimized for the style of usage required by search (fast readings)

n  Computation infrastructure for managing very large parallel and distributed

computations across the underlying physical infrastructure

Google (web search engine)!

9

10

Inside Google

Distributed System Examples (ii)!

n  Support large numbers of players simultaneously

n  Enable players to cooperate, compete and interact in a
persistent virtual world

n  Major challenge (!!) in the the development of distributed systems:

n  Requires fast response times for preserving user experience of the game

n  Requires real-time propagation of events for maintaining a consistent view

of the shared world

Massively Multiplayer Online Games!

11

Distributed System Examples (ii)!

n  Centralized state management

n  A single copy of the state of the world is maintained on a centralized server

n  Clients access the state via players’ consoles or other devices

n  The server consists of a cluster of computer nodes

"Highly loaded 'star systems' have their own node while the others shared a node".
Events are directed to the right node while keeping track of movement of players
among start systems."

n  Distributed state management

n  World state is partitioned across a number of servers

n  Users are dynamically allocated to a particular server based on current usage patterns

(ex. based on geographical proximity or network delays)

Massively Multiplayer Online Games!

12

+Distributed System Challenges!

13

Challenge Description

Heterogeneity A distributed system must be constructed from a variety of different networks,
operating systems, computer hardware and programming languages.

Openness A distributed systems should be extensible.

Security Sensitive information is keep secret when transmitted in messages over a network.

Scalability A distributed system is scalable when the cost of adding a user is constant in
terms of the resources that must be added.

Failure handling A distributed system needs to be aware of the possible ways in which its
components may fail and be designed to deal with each of those failures.

Concurrency The presence of multiple users is a source of concurrent requests to a resource.
Each resource must be designed to be safe in a concurrent environment.

Transparency Certain aspects of distribution are invisible to the application programmer

Quality of Service Properties provided at runtime (performance, security, reliability).

Distributed System Challenges!

n  Networks (ex. ethernet, token ring)

n  Masked by the fact that all computers in the network know the protocol

n  Hardware (ex. little/big endian)

n  Must be dealt with before exchanging messages between programs running on

different hardware

n  Operative Systems communication APIs (ex. unix vs windows)

n  Programming Languages data types (ex. arrays vs hash tables)

Heterogeneity!

14

Distributed System Challenges!

n  Multiple Implementations

n  Due to the number of programmers and technologies

n  Requires the use of abstractions (network, hardware, OS, programming languages)

Heterogeneity!

15
Middleware
 Virtual Machine

Distributed System Challenges!

n  Partial failures

n  Can non-failed components continue operation?

n  Can the failed components easily recover?

n  Failure detection and failure masking

n  Recovery

n  An import technique is replication

n  Why does space shuttles has 3 on-board computers?

Failure handling!

16

Distributed System Challenges!

n  For a user a distributed system appears as a single integrated facility

Transparency!

17

Transparency Description

Access Hide differences in data representation and how a resource is accessed

Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use

Replication Hide that a resource may be shared by several competitive users

Concurrency Hide that a resource may be shared by several competitive users

Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

Distributed System Challenges!

n  Transparency

n  Not easy to maintain

Transparency Example!

18

+

How is the Web concerned with !
these challenges!

19

?

+Summary!

20

Workstation
Sources

Active

DBMS

Mobile

Naming and assignation

Communication

+

Mobile

Workstation
Sources

Summary!

21

Active

DBMS

Global State and Fault Tolerance

Time

Workstation
Sources

Mobile

22

Active

DBMS

Summary!

Security

+Desirables Properties!

23

n  Tolerant to failures

n  Should continue working even if some of its components fails

n  Tolerant to communication problems

n  Ex. message lost and network unavailability

n  Tolerant to security attacks

n  Ex. Confidentiality, system integrity, Denial of Service (DoS)

n  Consequences:

n  Decisions have to be taken locally because the system' global state is unknown, it can scale

dynamically and there are no guarantees concerning the network

+Outline!
ü  Distributed Systems Basics

ü  Definition and examples

ü  Challenges

ü  Case study: the World Wide Web

n  System Architectures

n  Elements

n  Layers model

n  N-Tier model

n  Case study: the Web Browser

n  Client-Server Model

n  Characteristics

n  Implementation

n  Example: RMI

+System Architecture!

25

n  Description of a system based on its composing elements and the
relationships among them

n  Elements represent the building blocks of a system

In practice an element may represent an individual computer or multiple
computers communicating via a network

n  Relationships are described using architectural patterns

+Architectural Elements!

26

n  Identified by answering the following questions:

n  What are the entities that are communicating in the distributed system?

n  How do they communicate (i.e. communication paradigm)?

n  What roles and responsibilities do they have in the overall architecture?

n  How are they mapped on the physical distributed infrastructure (i.e.,

placement)?

Architectural Elements!
Communication entities and paradigms!

27

Architectural Elements!

n  Describe an element task in a given architecture at runtime:

n  Client-Server

n  Simple approach for sharing of data and resources

n  (!!) Scales poorly

n  Peer-to-Peer

n  All elements in the architecture play similar roles (peers)

n  i.e. there is no distinction between client and server

n  All elements offer the same interfaces to each other (operations)

Roles and Responsibilities!

28

Architectural Elements!
Roles and Responsibilities!

29

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

Client-Server
 Peer-to-Peer

•  Servers may in turn be clients of other servers
 •  Shared objects are place, retrieve and replicated

among peers

•  Complex than the client-server model

Architectural Elements!
Roles and Responsibilities Example!

30

Client-Server
 Peer-to-Peer

Architectural Elements!

n  Map elements to the underlying physical infrastructure

n  Considerations

n  Communication patterns between entities

n  Reliability on given computers and computers current loading

n  Quality of communication between different machines

n  Ex. video games

n  Strategies

n  Mapping of services to multiple servers

n  Caching

n  Mobile code

Placement!

31

Architectural Elements!
Placement Examples!

32

Server

Server

Server

Service

Client

Client

Client

Proxy

Web

server

Web

server

server
Client

Service provided my multiple
services

Caching

Architectural Elements!
Placement Examples!

33

Mobile Code

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

+Architectural Patterns!
n  Build on top of the architectural elements

n  Structural patterns that have shown to work in given circumstances

n  Represented using architectural models

n  Layers

n  Abstracts complexity by partitioning the system in a number of layers, with a given
layer making use of the services offered by the layer below, thus being unaware of
implementation details

n  N-tiers

n  Complementary to the layering model

n  Organize functionality of a given layer and place this functionality into appropriate

servers or physical nodes

34

Architectural Patterns!

n  The functionality of a system is divided
in several layers

n  Layers are typically not stand-alone
components. Their functionality
depends on other layers

n  Distributed systems are designed from
the beginning taking into account its
composing layers

Layer Model!

35

Architectural Patterns!
Layer Model Example!

36

OS X

Architectural Patterns!
Layer Model Example!

37

n  Presentation

Offers operations to a client for interacting with the system

n  Application Logic

Determines what the system actually does

Enforces the business rules and establishes the business process

n  Resource Manager

Deals with the business logic data (e.g., storage, indexing, and retrieval).

Can be any system providing querying capabilities and persistence (e.g.
DBMS)

Architectural Patterns!
Top-down Layer Design!

38

Architectural Patterns!
Bottom-up Layer Design!

39

n  Approach widely used because
legacy systems exist and cannot
be easily replaced

n  Much of the work consist in coping
with heterogeneity through the use
of middleware's

Architectural Patterns!
Bottom-up Layer Design!

40

Architectural Patterns!

n  Organizes architectural elements based on their distribution

n  1-Tier (Monolithic)

n  2-Tiers (Client-Server)

n  3-Tiers (Middleware)

n  N-Tiers

N-Tier model!

41

Architectural Patterns!

n  All the layers are centralized in a
single place

n  Managing and controlling resources
is easier

n  Can be optimized by blurring the
separation between layers

1-Tier (monolithic)!

42

Architectural Patterns!
2-Tier (client-server)!

43

n  Several presentation layers can be defined
depending on what each client needs to do

n  Takes advantage of clients computing power for
creating more sophisticated presentation layers

à Saves computer resources on the server

n  The resource manager only sees one client: the
application logic

à Helps with performance since no extra sessions are
maintained

Architectural Patterns!
2-Tier (client-server)!

44

n  Introduces the notion of (web) service and
service interface

à  The client invokes a service implemented by
a server through an interface

n  All the services provided by a server
define its API (Application Programing
Interface)

Architectural Patterns!
2-Tier (client-server)!

45

n  Advantages

n  Can off-load work from server to
clients

n  Server design is still tightly coupled
and can be optimized by ignoring
presentation issues

n  Relatively easy to manage from a
software engineering point of view

n  Disadvantages

n  A single server can only manage a
limited number of clients

n  There is no failure encapsulation. If a
server fails, no clients can work

n  The load created by a client will
directly affect other clients since they
compete for the same resources

Architectural Patterns!

n  Fully separates the three layers

n  Simplifies the design of clients by
reducing the number of interfaces it
needs to know

3-Tier (middleware)!

46

Architectural Patterns!

n  Architecture resulting from connecting several 3-tier systems to each other

N-Tier!

47

Architectural Patterns!

n  Alternatives to client-server organizations

2-Tier (client-server)!

48

+Case Study: Web Browser Architecture!

Case Study: Web Browser Architecture!
Browser Evolution!

www.evolutionoftheweb.com

Case Study: Web Browser Architecture!

n  Shows a browser' fundamental
components and their
relationships

n  Aids in analyzing trade-offs
between different design options

n  Template for designing new
browsers and re-engineering
existing ones

Reference Architecture!

Derived from Mozilla and Konqueror

Case Study: Web Browser Architecture!

n  Browser Engine

Provides a high-level interface for querying and
manipulating the Rendering Engine

n  Rendering Engine

Performs parsing and layout for HTML
documents (optionally styled with CSS)

n  Display Backend

Provides drawing and windowing primitives,
user interface widgets, and fonts

n  Data Persistence

Stores data associated with the browsing
session on disk (including bookmarks, cookies,
and cache)

Reference Architecture!

Case Study: Web Browser Architecture!
Examples!

Mozilla
 Lynx

Case Study: Web Browser Architecture!
Examples!

Safari

Case Study: Web Browser Architecture!
Isolating Programs!

Chrome

+Outline!
ü  Distributed Systems Basics

ü  Definition

ü  Minimal requirements

ü  Desirable properties

ü  System Architectures

ü  Layers

ü  N-Tier model

n  Client-Server Model

n  Characteristics

n  Implementation

n  Example: RMI

57

Client-Server Abstraction!

Client Server

request

response
Execution

+Client-Server Characteristics!

58

n  State Management

n  Server-side: persistent or not

n  Client-side: stateful or stateless

n  Communication Model

n  Connected or disconnected mode (datagrams)

n  Synchronous or asynchronous

n  Server-side Execution Model

n  One or more processes

n  Pool of processes or processes on-demand

+Server without Persistent Data!

59

n  The execution only uses the input parameters

n  Does not modify the state of the server

n  Ideal situation for:

n  Fault tolerance

n  Controlling concurrency

n  Example

n  A service for computing mathematical functions

+Server with Persistent Data!

60

n  Successive executions manipulates persistent data

n  Modifies the execution context

n  Introduces problems for controlling concurrent access to resources

n  Fault tolerance is not guaranteed

n  Examples

n  Database Server

n  Distributed File System

+Stateless Service!

61

n  The server does not keep track of client requests

n  Successive request are independents

n  Even if global data is modified, the current request dost not have any relation with

previews ones

n  The order among request is not important

n  Example

The service of clock synchronization of a network

à  NTP service (Network Time Protocol)

+Stateful Service!

62

n  Requests are executed based on the state produced by previews requests

n  Order among requests is important

n  Examples

n  Sequential access to the content of a file

à  depends on the file's pointer position

n  Calling a remote method

à  the result of the call depends on the state of the object

+Client-Server Characteristics!

63

ü  State Management

ü  Server-side: persistent or not

ü  Client-side: stateful or stateless

n  Communication Model

n  Connected or disconnected mode (datagrams)

n  Synchronous or asynchronous

n  Server-side Execution Model

n  One or more processes

n  Pool of processes or processes on-demand

+Connection Modes!

64

n  The main difference resides in the reliability of message delivery

n  Connection oriented

n  Message delivery is guaranteed

n  Order among messages is respected

n  Free of error (delivery is retried when necessary)

n  Datagram oriented

n  Follows the "best-effort" approach (i.e., there is not guarantees of message delivery)

n  Message can arrived duplicated

n  Order is not respected

+Communication Protocols!

65

+Synchronous Interaction!
n  Traditionally used for developing distributed systems

n  Client waits while server processes a request (blocking call)

n  Requires both parties to be on-line

n  Advantage

n  Simple to understand and implement

n  Failures are simple to manage

n  Disadvantages

n  Connection overhead

n  Higher probability of failures

n  Solutions:

à  Transactions

à  Asynchronous interactions

66

+Asynchronous Interaction (i)!
n  Calls to servers are non-blocking thus clients can continue running

n  Clients checks at different times to see if a response is ready

n  Typically implemented via message queues

n  Disadvantage

n  Adds complexity to client architecture

n  Advantages

n  More modular

n  More distribution modes (multicast, replication, message coalescing, etc.),

n  More natural way to implement complex interactions between heterogeneous systems

67

+Asynchronous Interaction (ii)!

68

+Client-Server Characteristics!

69

ü  State Management

ü  Server-side: persistent or not

ü  Client-side: stateful or stateless

ü  Communication Model

ü  Connected or disconnected mode (datagrams)

ü  Synchronous or asynchronous

n  Server-side Execution Model

n  One or more processes

n  Pool of processes or processes on-demand

+Execution models!
n  Iterative execution

n  Based on a single process

n  Concurrent execution

n  Based on multiple processes or threads

n  Processes are created on-demand

n  Processes are selected from a "pool of processes"

70

71

Single Process Execution!
while (true) {

 receive(client_id, message);

 extract(message, service_id, params);

 result = do_service[service_id](params);

 send(client_id, result);

}

Client

Server

72

Processes Created On-Demand!

Proxy

while (true) {

 receive(client_id, message);

 extract(message, service_id, params);

 create_process(client_id, service_id, params);

}

Server

// código a ejecutar

result = do_service[service_id](params);

send(client_id, result);

exit;

Proxy

Server

Client

request

response
execute

create

73

Pool of Processes!
Proxy

while (true) {

 receive(client_id, message);

 extract(message, service_id, params);

 dispatch(client_id, service_id, params);

}

Servicio

// código a ejecutar

result = do_service[service_id](params);

send(client_id, result);

exit;

Proxy

Server

Client

request

response
execution

Servidor’

dispatcher

Servidor’ Server’

+Client-Server Characteristics!

74

ü  State Management

ü  Server-side: persistent or not

ü  Client-side: stateful or stateless

ü  Communication Model

ü  Connected or disconnected mode (datagrams)

ü  Synchronous or asynchronous

ü  Server-side Execution Model

ü  One or more processes

ü  Pool of processes or processes on-demand

+Client-Server Implementation!

75

n  Based on systems low level primitives

n  Socket Programming

n  Based on middleware's

n  Remote Procedure Calls (RPC)

n  Remote Method Invocation (RMI)

+C/S: Low Level Primitives!

76

Client Server

request

response

-  Interaction protocol
-  Message packaging (marshalling)

-  Interaction protocol
- Message unpackaging
(unmarshalling)

+C/S: Middleware RPC!

77

Stub Skeleton

Code generated automatically

Client Server

78

Multiple clients <–> single server!

n  Limitations

n  Server-side can suffer from bottlenecks

n  Vulnerable to failures

n  Difficult to scale

79

Multiple clients <–> multiple servers!

n  Advantages

n  Load balancing

n  Fault tolerance and scalability

Client

Client

Server

Server

Server
Proxy

(Load Balancing)

?

