Introduction to Distributed System

Javier Espinosa, PhD
javier.espinosa@imag.fr

Outline

m Distributed Systems
m Definition and examples
= Challenges
m Case study: the World Wide Web

m System Architectures
m Elements
= Layers model
= N-Tier model
m Case study: the Web Browser

m Client-Server Model
m Characteristics

m Implementation
m Example: RMI

Distributed System

m Collection of (heterogeneous) networked computers which communicate
and coordinate their actions by passing messages

m Characteristics
m Appear to the user as a single computer
m Concurrency (with or without share memory)
m No global clock
m Independent failures

A component may fail (crash) independently, leaving the others still running

Why Distributed?

Economics Microprocessors offer a better price/
performance than mainframes
Speed A distributed system may have more

total computing power than a mainframe

Inherent distribution|

Some applications involve spatially
separated machines

Reliability

If one machine crashes, the system as
a whole can still survive

Incremental growth

Computing power can be added in small
increments

Why Learning Distributed Systems?

Everyone

Technicians

Engeenierees

Scientists

Principle

Know-how

Funcionamiento general
(sistemas, aplicaciones distribuidas)

Utilizacion de sistemas, construccion
elemental de aplicaciones distribuidas

Principios y técnicas de base de los
sistemas. Programacion concurrente
Principios de programacion distribuida

Practica de la programacion concurrente,
Utilizacion elemental de herramientas
(RMI, CORBA)

(Ademas) Profundizar sobre los sistemas
(arquitectura interna) Introduccion a la
Algoritmica distribuida. Modelado,
Evaluacion de desempeio, seguridad

Programacioén avanzada de sistemas
(comunicacion, etc.)
Administracion de sistemas

Arquitectura interna de herramientas
de construccion desde objetos hasta
componentes. Tolerancia a
fallas, QoS, Seguridad

Practica avanzada de (as herramientas
(J2EE, .NET, MOM, WEB Services)
Construccion, configuracion, adaptacion

de herramientas y de sistemas para dominios
Fcpprialhndnc (mr’\\/il, pmharrndnc)

Algoritmica paralela y distribuida,
aspectos fundamentales de la tolerancia a
fallas y la seguridad. Arquitectura de
sistemas. Servidores de alto desempeho

Segun el proyecto de investigacion

Internet (portion of it)

=

i:i:i: ﬂ‘ o

intranat ﬁ]-' J‘
= . ISP

- [\ -
| E: o oan \
)acl%)ne
AW,
satellite link

desktop comput?&
server.
network link:

Intranet

Bl (e (D
print and other servers\ } -1 T_]‘ 7 1

™~ Local area
Web server network

™

1
email server
=

File server

the rest of -

the Internet / \

router/firewall

= =

email server Desktop
computers

/ / 1
[N=

print

=

\Iﬂ]
-lq

m'l .

Example: Mobile Environment

Internet

Host intranet Home intranet

Wireless LAN

Mobile+—%" GPS satellite signal

phone | “= 3G phone network
Printer e T Laptop | .
Camera Host site

Distributed System Examples (i)

Google (web search engine)

m Index the entire content of the Web
m ex. web pages, multimedia documents, books

m Largest and most complex distributed system in history:

m Physical infrastructure consisting of very large numbers of networked computers
located at data centers all around the world

m Distributed storage system designed to support very large files and heavily
optimized for the style of usage required by search (fast readings)

m Computation infrastructure for managing very large parallel and distributed
computations across the underlying physical infrastructure

Inside Google

L

~
~
N
-
—~
-~
-
~
4
|
7
/7
;
P
7/

R
»

'}

Distributed System Examples (i

Massively Multiplayer Online Games

W@RLD

- WARCRAFT

m Support large numbers of players simultaneously

. . | I ®
m Enable players to cooperate, compete and interact in a R— V—.
persistent virtual world ONLINE

m Major challenge (!!) in the the development of distributed systems:
m Requires fast response times for preserving user experience of the game

m Requires real-time propagation of events for maintaining a consistent view
of the shared world

11

Distributed System Examples (i

Massively Multiplayer Online Games

m Centralized state management
m A single copy of the state of the world is maintained on a centralized server
m Clients access the state via players’ consoles or other devices =v e
. — —
m The server consists of a cluster of computer nodes

"Highly loaded 'star systems' have their own node while the others shared a node".
Events are directed to the right node while keeping track of movement of players
among start systems."

ONLINE

W@RLD

m Distributed state management - WARLRAFT
m World state is partitioned across a number of servers

m Users are dynamically allocated to a particular server based on current usage patterns
(ex. based on geographical proximity or network delays)

12

Distributed System Challenges

Challenge Description

Heterogeneity A distr!buted system must be constructed from a varie’gy of different networks,
operating systems, computer hardware and programming languages.

Openness A distributed systems should be extensible.

Security Sensitive information is keep secret when transmitted in messages over a network.

Scalability A distributed system is scalable when the cost of adding a user is constant in

terms of the resources that must be added.

Failure handling

A distributed system needs to be aware of the possible ways in which its
components may fail and be designed to deal with each of those failures.

Concurrency

The presence of multiple users is a source of concurrent requests to a resource.
Each resource must be designed to be safe in a concurrent environment.

Transparency

Certain aspects of distribution are invisible to the application programmer

Quality of Service

Properties provided at runtime (performance, security, reliability).

13

Distributed System Challenges
Heterogeneity
m Networks (ex. ethernet, token ring)

m Masked by the fact that all computers in the network know the protocol

m Hardware (ex. little/big endian)

m Must be dealt with before exchanging messages between programs running on
different hardware

m Operative Systems communication APls (ex. unix vs windows)

m Programming Languages data types (ex. arrays vs hash tables)

14

Distributed System Challenges

Heterogeneity

m Multiple Implementations
m Due to the number of programmers and technologies
m Requires the use of abstractions (network, hardware, OS, programming languages)

Machine A Machine B Machine C [Java - Bytecode)
L | L |

Distributed applications

Middleware service [LinPC] [vv“ujr:/dhgv?:%c]
Local OS Local OS Local OS v v
I I | [PCiLinux] [F'CIWinduws]
Network
Middleware Virtual Machine

15

Distributed System Challenges

Failure handling

m Partial failures
m Can non-failed components continue operation?
m Can the failed components easily recover?

m Failure detection and failure masking
m Recovery

m An import technique is replication
m Why does space shuttles has 3 on-board computers?

16

Distributed System Challenges

Transparency

m For a user a distributed system appears as a single integrated facility

Transparency Description

Access Hide differences in data representation and how a resource is accessed
Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource may be shared by several competitive users
Concurrency Hide that a resource may be shared by several competitive users
Failure Hide the failure and recovery of a resource

Persistence Hide whether a (software) resource is in memory or on disk

17

Distributed System Challenges

Transparency Example

m [ransparency
= Not easy to maintain Boston

EMP (ENO, ENAME, TITLE, LOC)
PROJECT (PNO, PNAME , LOC) Boston projects
PAY (TITLE, SAL) Boston employees

Boston assignment

ASG (ENO, PNO, DUR) D‘
SELECT ENAME, SAL | I
Boston projects
FROM EMP, ASG, PAY New York employees
WHERE DUR > 12 New York projects
New York assignments
AND EMP.ENO = ASG.ENO
AND PAY.TITLE = EMP.TITLE

CS454/654

Communication

Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects

Paris projects

New York projects
with budget > 200000

Montreal employees

Montreal assignments

18

()

How is the Web concerned with
these challenges

19

Summary

Sources

20

Summary

< Global State and Fault Tolerance >

;' vis

Mobile

\'/
(AP =
Workstation O=0

. Sources

21

Summary

- Secur|ty >
fg“”“””lllllllu@ .

Mobile

3 Sources

¥

oo

Workstation

g

Desirables Properties

Tolerant to failures
m Should continue working even if some of its components fails

Tolerant to communication problems
m EX. message lost and network unavailability

Tolerant to security attacks
m Ex. Confidentiality, system integrity, Denial of Service (DoS)

Consequences:

m Decisions have to be taken locally because the system' global state is unknown, it can scale
dynamically and there are no guarantees concerning the network

23

Outline

m System Architectures
m Elements
= Layers model
= N-Tier model
m Case study: the Web Browser

m Client-Server Model
m Characteristics

m Implementation
m Example: RMI

System Architecture

m Description of a system based on its composing elements and the
relationships among them

m Elements represent the building blocks of a system

In practice an element may represent an individual computer or multiple
computers communicating via a network

m Relationships are described using architectural patterns

25

Architectural Elements

m |dentified by answering the following questions:
m What are the entities that are communicating in the distributed system?
m How do they communicate (i.e. communication paradigm)?

m What roles and responsibilities do they have in the overall architecture?

= How are they mapped on the physical distributed infrastructure (i.e.,
placement)?

26

Architectural Elements
Communication entities and paradigms

Communicating entities
(what is communicating)

System-oriented Problem-

entities oriented entities
Nodes Objects
Processes Components

Web services

Interprocess
communication

Message
passing

Sockets

Multicast

Communication paradigms
(how they communicate)

Remote
invocation

Request-
reply

RPC

RMI

Indirect
communication

Group
communication
Publish-subscribe
Message queues

Tuple spaces
DSM

27

Architectural Elements
Roles and Responsibilities

m Describe an element task in a given architecture at runtime:
m Client-Server
m Simple approach for sharing of data and resources
m (!!) Scales poorly

m Peer-to-Peer
m All elements in the architecture play similar roles (peers)
m j.e. there is no distinction between client and server
m All elements offer the same interfaces to each other (operations)

28

Architectural
Roles and Responsibilities

Peer 1 Peer 2
2 App ™\ /%pg\
. e° .
. . oS)
invocation Soht%(re%tt’ée \) g%) %Q,g

result

Key: O \1& B
Process: Computer: Peers 4 ... N /,6 . (oo o 6\)
(Q}) g(596

(= So NS)S 08¢
2 CL) NCEM

& 3
Client-Server Peer-to-Peer
« Servers may in turn be clients of other servers » Shared objects are place, retrieve and replicated

among peers

» Complex than the client-server model 09

Architectural Elements
Roles and Responsibilities Example

Client-Server @

-

BitTorrent

30

Architectural Elements
Placement

m Map elements to the underlying physical infrastructure

m Considerations
m Communication patterns between entities
m Reliability on given computers and computers current loading
m Quality of communication between different machines
m EX. video games

m Strategies
m Mapping of services to multiple servers
m Caching
= Mobile code

31

Architectural

Placement

Service

Service provided my multiple
services

Caching

32

Architectural
Placement

a) client request results in the downloading of applet code

b) client interacts with the applet

@l Applet

Mobile Code

Applet code

Web
server

Web
server

33

Architectural Patterns

m Build on top of the architectural elements
m Structural patterns that have shown to work in given circumstances

m Represented using architectural models
m Layers

m Abstracts complexity by partitioning the system in a number of layers, with a given
layer making use of the services offered by the layer below, thus being unaware of
implementation details

m N-tiers
m Complementary to the layering model

m Organize functionality of a given layer and place this functionality into appropriate
servers or physical nodes

34

Architectural Patterns

Layer Model
" top-down architecture
. : e | =
= The functionality of a system is divided e A
in several layers .' Voo T m
PL-A | PL-B : ! e =

m Layers are typically not stand-alone .
components. Their functionality 5
depends on other layers '

m Distributed systems are designed from
the beginning taking into account its
composing layers

Architectural Patterns
Java™ 2 Platform, Standard Edition v 1.4

Layer Model Example
0S X ~ Development jaya Compiler 4 Debugger /la"adoc /l""“ ’

APl

BSD Classic m Java

“ QuickTime
Application services
(ouart (rancore)]

Core services
Carbon

Core Core foundation non-GUI API...

Core OS ("Darwin")

System utilities

Kernel ("xnu") Windows

N,

BSD
Mach

Hardware

Architectural Patterns
Layer Model Example

- hm

m Presentation ! presentation
Offers operations to a client for interacting with the system 'f"';"

appl ica;ion logic
layer

- hm

m Application Logic
Determines what the system actually does
Enforces the business rules and establishes the business process

. >
resource management
. layer

m Resource Manager e
Deals with the business logic data (e.g., storage, indexing, and retrieval).

Can be any system providing querying capabilities and persistence (e.g.
DBMS)

- - - = -

information system

N
~

37

Architectural
Layer Design

- — - = e - = = e = e =

-

top-down design

1. define access channels
and client platforms

2. define presentation
formats and protocols for
the selected clients and

protocols

3. define the functionality
necessary to deliver the
contents and formats needed
at the presentation layer

4. define the data sources
and data organization needed
to implement the application

logic

N e e

ll » client I

presentation
layer

.

>

- ——— -

>

application logic
layer

S

.

>

resource management
layer

- - = - - —

--

R U

38

Architectural Patterns

Bottom-up Layer Design

m Approach widely used because
legacy systems exist and cannot
be easily replaced

m Much of the work consist in coping
with heterogeneity through the use
of middleware's

.~ bottom-up design

PL-A | PL-B
PL-C
AL-B[¢] o

AL-A [l Kot

-

- —————————_

. [wrapper| wrapper| wrapper|

e - --———-—————-—--

application

Copyright Springer Verlag Berlin Heidelberg 2004

39

Architectural

- - - - e e - - - o e e e e e e e e =

Layer Design

- ————

bottom-up design N

1. define access channels 1
and client platforms

ll » client I

2. examine existing resources !
and the functionality —

they offer

3. wrap existing resources
and integrate their functionality
into a consistent interface

4. adapt the output of the

., -] —— e

> application logic
layer

j';
>

resource managemenf

application logic so that it
can be used with the required —|———
access channels and client

protocols /

N

> layer

- e - - - - -

information system

40

Architectural Patterns
N-Tier model

m Organizes architectural elements based on their distribution
m 1-Tier (Monolithic)
m 2-Tiers (Client-Server)
m 3-Tiers (Middleware)
m N-Tiers

41

Architectural Patterns
1-Tier (monolithic)

m All the layers are centralized in a [client)
single place 4=
! presentation
I layer 5
. . I - B
m Managing and controlling resources | 10 2
IS easier ! application logic §
| layer 5
I P2 E
I
m Can be optimized by blurring the | | resource management]| E
separation between layers \ layer

e

- -

Architectural Patterns

2-Tier (client-server)

m Several presentation layers can be defined
depending on what each client needs to do

m Takes advantage of clients computing power for
creating more sophisticated presentation layers

- Saves computer resources on the server

m The resource manager only sees one client: the
application logic

- Helps with performance since no extra sessions are
maintained

Personal computers
or mobile devices

~ User view, ~~

Server

— hpplcation

[controlsand
\._data manipulation /

" User view, N
controlsand

\and data management)

-~ Application

\. data manipulation /

Tier 1

{ and data management)

Tier 2

43

Architectural
2-Tier (client-server)

m |ntroduces the notion of () and

> The client invokes a service implemented by
a server through an interface

m All the services provided by a server
define its (Application Programing
Interface)

server's API

| service [

interface

service
interface

service ||

interface

service ||

interface

[service][service][service] [service]

1L

resource management

layer

server

44

Architectural Patterns
2-Tier (client-server)

m Advantages m Disadvantages
m Can off-load work from server to m A single server can only manage a
clients limited number of clients
m Server design is still tightly coupled m There is no failure encapsulation. If a
and can be optimized by ignoring server fails, no clients can work

presentation issues _ _
m The load created by a client will

m Relatively easy to manage from a directly affect other clients since they
software engineering point of view compete for the same resources

45

Architectural Patterns
3-Tier (middleware)

m Fully separates the three layers

Personal computers Application server
. L]) or mobile devices
m Simplifies the design of clients by T Database server
: : : 7~ User "\
reducing the number of interfaces it | viewand - Application)
needs to know g E T N
= " Database |
manager |
~User - o A : y ’
[viewand | (Application\/
. controls / __logic /
Tier 1 Tier 2 Tier 3

Architectural
N-Tier

m Architecture resulting from connecting several 3-tier systems to each other

client client
presentation
layer | Web browser N-tier architecture

| integration logic | application middleware ! . \
- - logic 1 presentation :
[cllenf] [cllenf] layer ! layer g!
: 8
10 | 5!
>

[} w1
[} c !
v resource 1] f_: !
wrapper wrapper management ! z G |
wrapper v layer ! application logic § '
Y e Tl 5 ! layer middleware E '

. 9 N 9
S = Hl=sl === : :
| = - 1L -
- ;I \ resource management 1
\ layer)

N

Architectural Patterns
2-Tier (client-server)

m Alternatives to client-server organizations

Client machine

‘ User interface User interface User interface User interface User interface
‘_,,x”/ \ Applicatiorn_q Application Application
______—$_"“‘---——______¢___ Nt o Database_
_Uﬁs:er interface T _—_$_______"“‘:-——-$_______
Application Application “F;pplication \ /,/"J_— !
Database Database Database Database —_FDatabase ‘

Server machine

48

Case Study: Web Browser Architecture

Case Study: Web Browser Architecture
Browser Evolution

! 213.0 4.0 5.0 6.0 7.0
Legend
g ' Opera @@ 00— @
O Open-source !
@ Closed ! - 08 10 12 L'EVOLUTION DU WEB = Navigateurs et technologies £ Lessor d'Internet 81| B G ¢
losed-source : safa" Q_Q_Q— - - - . - - - - ‘ ‘ ‘ - : s -
© Hybrid : 10 20 Ny, § g i
| Konqueror O O O
|
| 05 1.0
) Firesfox O———O—
g | 1.0 1.2:
2 Galeon O—Or——————
D N e .
§| 1998-03-31 M18 1.0 - 1.7 B
) Mozilla O 0, —QO O :
! ; R g :
1.0 20 3.0 4.0.- 45 6.0 7.0 8.0 :
Netscape —@— 00— ©@ O O O
A
1.0 20 30
Mosaic @—~——1T—@—@
[N
| 1.0’:_ 20 3.0 40 5.0 55 6.0
Internet Explorer @®—@—@ @ @ L
I
1.0 2.0 | 24 2.85 .
O)
Lym @—@——— O www.evolutionoftheweb.com
o [s0] < [Te) © ~ [o0) (2] o - o [s2] < [Te)
[o2] [o2] [o2] D D [o2] [o2] [o2] o o o o o o
(2] [o2] [o2] (2] (2] (2] (2] (2] o o o o o o
— — — — — — - - « « ~ ~ « [

Case Study: Web Browser Architecture

Reference Architecture

m Shows a browser' fundamental
components and their
relationships

m Aids in analyzing trade-offs
between different design options

m Template for designing new
browsers and re-engineering
existing ones

- =N
_________________________ [
[1 N
u User Interface ;9
_______________________ - | =
! 5
______________________ T
(\ | (_Iz
. Browser Engine /'——»' 2.
_____________________ I
1 | 3
o
T T T T T T T T T T T T T T T T T \ I ®
. Rendering Engine /' '\
-7

(.\ fJavaScript ' XML ' ¢
\ / \ / \

\ /

—_— —_,— e = TN e e e - _— _—_

Derived from Mozilla and Konqueror

Case Study: Web Browser Architecture
Reference Architecture

Browser Engine
Provides a high-level interface for queryingand (-~~~ "~~~ 7 _
manipulating the Rendering Engine '

[
o]
_______________________ -
v B
Rendering Engine Co N | o
. i L—— 2
Performs parsing and layout for HTML R Eiro_wfer E_ngm_e ______ / &
documents (optionally styled with CSS) L _1 _________ : §

\
[

i Rendering Engine | '
Display Backend I dele / o
Provides drawing and windowing primitives, - } - - ;_ - & . ,;_ D A
user interface widgets, and fonts Networking) | J;‘;:%rgf;r‘l | el || Display Backend

\ / \ / \ / \

Data Persistence

Stores data associated with the browsing
session on disk (including bookmarks, cookies,
and cache)

Case Study: Web Browser Architecture
Examples

’ \
: | User Interface | I s — —
! v 1 4 5\ ./ |
_____ User Interface o)
3 Ul Toolkit (XPFE) | . . |Userinterface SR
N — ! o} 1o \ |
User Interface Il gl |] Browser Core T
! e / . 7}
____________________ | » - | Browser Engine X La
! Browser Engine \ | 39 ! % N LI _______ . L8
~ o ® O,] e e e e e m - — = 1
_______________________________________ Gecko eS| 3 / . : \ L8
! Rendering Engine) lee | § N F_“’_”f"f”_”? _E[‘?"_‘e_ ________ ! o)
____________________ - ! 1
\ /
P, At Vi, At VA, At YAt 2N A N ,’”""__“\. ,’;"S"._t‘\l /’)_(I_/IL‘\"I ______ r ‘I
! I [I ! i avaScri
| Necko ||| Spider- || Expar ||| GTK+ ! Ll owwwlib || nt tp b N ol Curses !
| | Monkey | | Adapter | : :. nterpreter I arser | !
N N 4 | S . N A S
i v | JavaScript XML ! v ! | L : Display Backend
Security | | | | Security |
I nterpreter Parser 1 ihrari
' [nsspsw) | P : GTK+/ X11 Libraries ! | (libgnutls) | |
________ . N ! ' Networking
Networking Display Backend | S=------ .

Mozilla Lynx

Case Study: Web Browser Architecture
Examples

\ \
! ! |
} User Interface > User !
. , 1 |Persistence| |
S _-
User Interface ! :
, T T T Tt T T T T T T T i' _____________ N 1 :
! : ! Secure |
| Brower Engine (WebKit) ; »|Persistence !
\ ! I | (Keychain) |
S X
Browser Engine ! |
-~~~ TmTTTmTmTTTm)\ A \ | :
! 1
| Adapter (KWQ) : [engine | !
: KHTML | : :' Persistence i
I ! \ ;
/ S e - -
Render|ng Engine Data Persistence
/'___V____\/’___V___"\,’__'V_"‘\/"JV___V _________ \I
| Core | | : |
' Foundation i KJS E Expat | Cocoa / Carbon |
I\ ________ 4 ¢ :\ ________ N ____ ’
Networking | ! XML Display Backend
I PCRE ! Parser
I
JavaScript
Interpreter

Safari

Web Browser Architecture

Isolating Programs

Rendering Engine Rendering Engine

M

Vainthread

Browser

Vo
P
X Ix , RenderProcessHost '—‘ RenderViewHost
HE

HE

[= : RenderProcessHost
) Plug-in NS FES— '
[DOMBindings | [DOMBindings | : Z
| JavaScript Engine | | JavaScript Engine | L O E X
[HTMLRenderer | [HTML Renderer | | Plug-in = '
| Storage | | Network | [UserInterface | E,;Pc 1 s D
A

Browser Kernel

q RenderProcess I-;—é—' RenderView h
: P
i "

...

Chrome

Outline

m Client-Server Model
m Characteristics
= Implementation
= Example: RMI

Client-Server Abstraction

Client

Server

Execution

57

Client-Server Characteristics

m State Management
m Server-side: persistent or not
m Client-side: stateful or stateless

m Communication Model
m Connected or disconnected mode (datagrams)
m Synchronous or asynchronous

m Server-side Execution Model
m One or more processes
m Pool of processes or processes on-demand

58

Server without Persistent Data

m The execution only uses the input parameters
m Does not modify the state of the server

m |deal situation for:
m Fault tolerance
m Controlling concurrency

m Example

m A service for computing mathematical functions

59

Server with Persistent Data

m Successive executions manipulates persistent data
m Modifies the execution context
m Introduces problems for controlling concurrent access to resources
m Fault tolerance is not guaranteed

m Examples
m Database Server
m Distributed File System

60

Stateless Service

m The server does not keep track of client requests

m Successive request are independents

m Even if global data is modified, the current request dost not have any relation with
previews ones

m The order among request is not important

m Example

The service of clock synchronization of a network
> NTP service (Network Time Protocol)

61

Stateful Service

m Requests are executed based on the state produced by previews requests
m Order among requests is important

m Examples
m Sequential access to the content of a file
> depends on the file's pointer position
m Calling a remote method
> the result of the call depends on the state of the object

62

Client-Server Characteristics

m Communication Model
m Connected or disconnected mode (datagrams)
m Synchronous or asynchronous

m Server-side Execution Model
m One or more processes
m Pool of processes or processes on-demand

63

Connection Modes

m The main difference resides in the reliability of message delivery

m Connection oriented
m Message delivery is guaranteed
m Order among messages is respected
m Free of error (delivery is retried when necessary)

m Datagram oriented
m Follows the "best-effort" approach (i.e., there is not guarantees of message delivery)
m Message can arrived duplicated
m Order is not respected

64

Communication Protocols

TCP/IP model

Application layer 7. Application
(FTP, SMTP, Telnet)
6. Presentation
Transport layer '---<4 5. Session
(TCP, UDP)
4, Transport
Internetwork layer = 3. Network
(IP) !
: 2. Data Link
Datalink layer - 1. Physical

(Ethernet, SLIP, PPP)

0SI reference model

(Transmission medium

Synchronous Interaction

m Traditionally used for developing distributed systems
m Client waits while server processes a request (blocking call)
m Requires both parties to be on-line

m Advantage
m Simple to understand and implement
m Failures are simple to manage

invoking

m Disadvantages
m Connection overhead
m Higher probability of failures
m Solutions:
> Transactions
> Asynchronous interactions

blocking
period

-————————— -

invoked
execution thread

g g U U U Y

66

Asynchronous Interaction (i)

m Calls to servers are non-blocking thus clients can continue running
m Clients checks at different times to see if a response is ready
m Typically implemented via message queues

m Disadvantage

m Adds complexity to client architecture

m Advantages
= More modular
m More distribution modes (multicast, replication, message coalescing, etc.),

m More natural way to implement complex interactions between heterogeneous systems

67

Asynchronous Interaction (ii)

- m e - - e— e— e o = E— em e— e o o

7 ~
’ /_
I ©
| S |
' E 5 "
I H |
| £ & |
1 d.w !
85 d !

kc .]
I o9 : "
I H
1\ .W“ »]
\ : ’
I'||||||.l|||||||ul |||||| 4
v
Q
9 3
) Q
3 S
o
A

P e it R .
/ ©
I g \
1 d !

f
1 £ 1
| "
1
]
1 [« I
] -mm = I
-
1 I“c 3 Q]
1 We Q. ﬁ > 1
. ES & _
\ 1
\ /
N e e e e e e e e e, e, e, e, e, e, —m—m— - 4
)
A140D

SUIDWaJ poaJy}

68

Client-Server Characteristics

m Server-side Execution Model
m One or more processes
m Pool of processes or processes on-demand

69

Execution models

m [terative execution
m Based on a single process

m Concurrent execution
m Based on multiple processes or threads
m Processes are created on-demand
m Processes are selected from a "pool of processes”

70

Single Process Execution

while (true) {
receive(client_id, message);
extract(message, service_id, params);
result = do_service[service_id](params);

send(client_id, result);

. WEw
) e L
o R

Processes Created On-Demand

Proxy

while (true) {

}

receive(client_id, message);
extract(message, service_id, params);

create_process(client_id, service_id, params);

request

[Client

| response |

Server

// codigo a ejecutar

result = do_service[service_id](params);

send(client_id, result);

exit;

Proxy 1

72

Pool of Processes

Proxy Servicio

while (true) { // cddigo a ejecutar

_ _ , result = do_service[service_id](params);
receive(client_id, message);

send(client_id, result);
extract(message, service_id, params);

exit;
dispatch(client_id, service_id, params);

reéuest_,,—'?[

| response |

[Client

73

Client-Server Characteristics

74

Client-Server Implementation

m Based on systems low level primitives
m Socket Programming

m Based on middleware's
m Remote Procedure Calls (RPC)
m Remote Method Invocation (RMI)

75

C/S: Low Level Primitives

- Interaction protocol
- Message packaging (marshalling)

Client

s pECTE

- Interaction protocol
- Message unpackaging
(unmarshalling)

| response |

<€

I>

/6

C/S: Middleware RPC

a2 |

Client

Code generated automatically

—

Stub

Skeleton

>

i’

Multiple clients <—> single server

m Limitations
m Server-side can suffer from bottlenecks
m Vulnerable to failures
m Difficult to scale

/8

Multiple clients <—=> multiple servers

m Advantages
= Load balancing
m Fault tolerance and scalability

4 I
[Client 1: é Server
I - Y,
I -
|
|
|
|

[Client
Proxy

(Load Balancing)

79

