
Single Page Applications

1

Javier Espinosa, PhD
javier.espinosa@imag.fr

+Outline

n Single Page Applications
n AJAX in a nutshell
n MVC pattern
n Case study: AngularJS

AJAX in a Nutshell

3

+Single Page Applications (SPA)

n Resources are dynamically loaded and added to the page as necessary

n Inspired in native application

Single Page Applications (SPA)

5

Présentation
(DOM + JavaScript)

Affichage
(HTML + CSS +

DOM)

Animation IHM client
(JavaScript)

Animation IHM
serveur (Java)

Logique métier
(ex Java Beans)

Client ServeurUtilisateur

New problems and solutions
n Problems

1. Mimic static addresses (http://mysite.com/...) and manage browser
history

2. Mix HTML strings and Javascript
3. Handle Ajax callbacks

n Solutions
1. Routing (http://mysite.com/#/...)
2. Templating (Javascript-HTML)
3. Providers + REST

6

http://mysite.com/
http://mysite.com/

SPA architecture

7

*

REST

TEMPLATING

ROUTING

MVC Pattern
n Architectural pattern for implementing a interactive applications

n Introduced in the 1970s as part of Smalltalk

n Classifies objects based on their roles in the application
n Model: object(s) representing the application domain
n View: objects presenting the model to a user (graphic part)
n Controller: glue between models and views

8

MVC Pattern Benefits
n Organization

n Rapid Application Development

n Reusing Code

n Parallel development

n The views and application behavior should reflect the manipulations
of the data immediately

9

MVC Pattern Implementations
n Popular JS frameworks

n Angular
n Backbone
n Ember
n Knockout

n Note: the role of controller greatly varies in frameworks

n Other MVC like patterns
n MVVM (Model-View-ViewModel)
n MVP (Model-View-Presentation)

10

Original MVC Interaction Pattern

Apple MVC Interaction Pattern

Apple MVC Interaction Pattern

MVC Methodology
n Step 1: Models

Define the classes that would embody the special application domain specific
information
n It can be as simple as an integer or string

n Step 2: Views
Define a user interface to the model by laying out a composite view (window) by
"plugging in" instances taken from pre-defined UI classes
n They request data from their model

n Step 3: Controllers
n Define associations between a model and a view and the situations of interest

16

AngularJS

17

+AngularJS Overview (i)
n Framework for building single page applications using MVC

n Extends HTML with declarative expressions for defining application's
components (views, models)
n Angular is what HTML would have been if it had been designed for applications

n Angular teaches the browser new tricks through directives
n Data binding
n Support for forms and form validation
n DOM control structures for repeating, showing and hiding DOM fragments

n Conceived with testability in mind

18

+AngularJS Overview (ii)

n Simplifies application development by presenting a higher level of
abstraction to the developer
n You don not manipulate the DOM directly

n Built with CRUD (Create/Read/Update/Delete) application in mind
n Data-binding, form validation, reusable components, unit-testing, end-to-end

testing
n (!!) The majority of web applications are CRUD

n Not a good fit for Games and GUI editors
n Intensive and tricky DOM manipulation
n Use a library with a lower level of abstraction (e.g, jQuery)

19

+Angular App Example

20

Index.html

Template

Directives

Expressions

+Compilation Process

21

n When Angular initialize, it compiles (parses and processes) the template for
producing a view

+Compilation Phases

22

1. Compilation: traverse the DOM and collect all of the directives
n The result is a linking function.

2. Linking: combine the directives with a scope and produce a live view
n Any changes in the scope model are reflected in the view, and any user interactions with the

view are reflected in the scope model (2-way binding)

+AngularJS MVC

n Models are the properties of a scope
n Scopes are attached to the DOM
n Scope properties are accessed through bindings

n Views are the template (HTML with data bindings) that is presented to the
user

n Controllers contains the business logic behind the application to decorate
the scope with functions and values

23

+Directives

n Annotations on DOM elements (e.g. attribute, element name, comment or
CSS class)

n Tell the compiler ($compile) to attach a specified behavior to that DOM
element

n Examples:
n ng-app: specifies that the HTML element will be manage by angular
n ng-repeat: instantiates a template once per item from a collection
n ng-hide: shows/hides an HTML element based on the evaluation of an expression
n ng-src: loads an image based on an expression

24

+Directives

n ng-repeat example

25

+Data Binding

n Automatic synchronization of data between the model and view components

26

Most template systems Changes immediately reflected
(Live view)

+Expressions

n JavaScript-like code snippet in a template that allows to read and write
variables
n Syntax: {{ expression | filter }}

n Expressions bind the view and the model
n Angular provides a scope for the variables accessible to expressions

27

+Controllers (i)

n The controller drives things:
n Controls what data gets bound into the view (i.e. prepares data for the view)
n Define the business logic needed by a single view

n A controller is implemented via a JavaScript function that is used to
augment the Angular Scope with data and logic

28

+Controllers (ii)
n Controller are attached to the DOM via the ng-controller directive

n When angular finds a ng-controller directive, it instantiates a new Controller
object creating a new child scope
n Scopes are arranged in hierarchical structure

29

+

30

Controller-Scope-View

31

HANDS ON

?

